Taking phage integration to the next level as a genetic tool for mycobacteria

Gene. 2010 Nov 15;468(1-2):8-19. doi: 10.1016/j.gene.2010.07.012. Epub 2010 Aug 6.

Abstract

Genes must be stably integrated into bacterial chromosomes for complementation of gene deletion mutants in animal infection experiments or to express antigens in vaccine strains. However, with currently available vectors it is cumbersome to create multiple, stable, unmarked chromosomal integrations in mycobacteria. Here, we have constructed a novel integration vector for mycobacteria that enables expression of genes from a cassette protected from transcriptional interference by bi-directional transcriptional terminators proven to be highly efficient in in vitro transcription termination assays. Removal of the integrase gene by a site-specific recombinase, easily identifiable by loss of a backbone reporter gene, stabilizes the integration cassette and makes this vector ideally suitable for infection experiments. This integration vector can be easily adapted to different mycobacteriophage attachment sites (attB) due to its modular design. Integration of a gfp expression cassette at the L5, Giles and Ms6 attB sites in the chromosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis yielded identical gfp expression levels, indicating that none of these sites are compromised for gene expression. The copy number of pAL5000-based extrachromosomal plasmids is 23 in M. smegmatis as determined by quantitative real-time PCR and accounts for the previously observed drastic reduction of gene expression upon integration of plasmids into the chromosome of mycobacteria. Gfp expression and fluorescence of M. smegmatis and M. tuberculosis strains with multiple integrations of gfp increased concomitantly with the copy number demonstrating that these vectors can be used to generate stronger phenotypes and/or to analyze several genes simultaneously in vivo.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / genetics
  • Attachment Sites, Microbiological / genetics
  • Base Sequence
  • Chromosomes, Bacterial / genetics
  • Clone Cells
  • Gene Dosage / genetics
  • Genes, Reporter
  • Genetic Techniques*
  • Green Fluorescent Proteins / metabolism
  • Molecular Sequence Data
  • Mycobacteriophages / genetics*
  • Mycobacterium / virology*
  • Plasmids / genetics
  • Terminator Regions, Genetic
  • Transcription, Genetic
  • Transformation, Bacterial
  • Virus Integration / genetics*

Substances

  • Green Fluorescent Proteins