Optical spectroscopy of conductive junctions in plasmonic cavities

Nano Lett. 2010 Aug 11;10(8):3090-5. doi: 10.1021/nl1017173.


The optical properties of a nanoparticle dimer bridged by a conductive junction depend strongly on the junction conductivity. As the conductivity increases, the bonding dimer plasmon blueshifts and broadens. For large conductance, a low energy charge transfer plasmon also appears in the spectra with a line width that decreases with increasing conductance. A simple physical model for the understanding of the spectral feature is presented. Our finding of a strong influence of junction conductivity on the optical spectrum suggests that plasmonic cavities might serve as probes of molecular conductance at elevated frequencies not accessible through electrical measurements.