Lactic acidosis induced by metformin: incidence, management and prevention

Drug Saf. 2010 Sep 1;33(9):727-40. doi: 10.2165/11536790-000000000-00000.


Lactic acidosis associated with metformin treatment is a rare but important adverse event, and unravelling the problem is critical. First, this potential event still influences treatment strategies in type 2 diabetes mellitus, particularly in the many patients at risk of kidney failure, in those presenting contraindications to metformin and in the elderly. Second, the relationship between metformin and lactic acidosis is complex, since use of the drug may be causal, co-responsible or coincidental. The present review is divided into three parts, dealing with the incidence, management and prevention of lactic acidosis occurring during metformin treatment. In terms of incidence, the objective of this article is to counter the conventional view of the link between metformin and lactic acidosis, according to which metformin-associated lactic acidosis is rare but is still associated with a high rate of mortality. In fact, the direct metformin-related mortality is close to zero and metformin may even be protective in cases of very severe lactic acidosis unrelated to the drug. Metformin has also inherited a negative class effect, since the early biguanide, phenformin, was associated with more frequent and sometimes fatal lactic acidosis. In the second part of this review, the objective is to identify the most efficient patient management methods based on our knowledge of how metformin acts on glucose/lactate metabolism and how lactic acidosis may occur (at the organ and cellular levels) during metformin treatment. The liver appears to be a key organ for both the antidiabetic effect of metformin and the development of lactic acidosis; the latter is attributed to mitochondrial impairment and subsequent adenosine triphosphate depletion, acceleration of the glycolytic flux, increased glucose uptake and the generation of lactate, which effluxes into the circulation rather than being oxidized further. Haemodialysis should systematically be performed in severe forms of lactic acidosis, since it provides both symptomatic and aetiological treatment (by eliminating lactate and metformin). In the third part of the review (prevention), the objective is to examine the list of contraindications to metformin (primarily related to renal and cardiovascular function). Diabetes is above all a vascular disease and metformin is a vascular drug with antidiabetic properties. Given the importance of the liver in lactate clearance, we suggest focusing on the severity of and prognosis for liver disease; renal dysfunction is only a prerequisite for metformin accumulation, which may only be dangerous per se when associated with liver failure. Lastly, in view of metformin's impressive overall effectiveness profile, it would be paradoxical to deny the majority of patients with long-established diabetes access to metformin because of the high prevalence of contraindications. The implications of these contraindications are discussed.

Publication types

  • Review

MeSH terms

  • Acidosis, Lactic / chemically induced*
  • Acidosis, Lactic / epidemiology
  • Acidosis, Lactic / prevention & control
  • Animals
  • Diabetes Mellitus, Type 2 / drug therapy
  • Humans
  • Hypoglycemic Agents / adverse effects*
  • Hypoglycemic Agents / therapeutic use
  • Incidence
  • Metformin / adverse effects*
  • Metformin / therapeutic use
  • Risk Factors


  • Hypoglycemic Agents
  • Metformin