Caco-2/TC7 cell line characterization for intestinal absorption: how reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human?

Toxicol In Vitro. 2011 Feb;25(1):13-20. doi: 10.1016/j.tiv.2010.08.009. Epub 2010 Aug 21.


Caco-2 cell line is one of the most used in vitro model to study intestinal absorption of compounds at screening level. Several clones have been isolated from Caco-2 cell line and characterized for their activities. Among them, TC7 clone was isolated from a late passage of the parental Caco-2 line and has shown to consist of a more homogeneous population with respect to the most representative functions of the small intestinal enterocytes, with more developed intercellular junctions. On the basis of these characteristics, it was selected within the framework of the EU A-Cute-Tox project to check its suitability to predict intestinal transport. In the present study, drugs, synthetic or natural chemicals have been characterized for their absorption profile in TC7 cells cultivated on semi-permeable filters for 21 days. The absorption experiments have been performed with the highest nontoxic concentration as determined in a preliminary set of cytotoxicity tests. The apparent permeability coefficient (P(app)) has been extrapolated by calculating the passage of the test compound from the donor to the receiver compartment as a time function. The samples have been collected at different time intervals and the concentration of the test compounds analyzed by analytical methods (HPLC, GC, GC/MS). The P(app) obtained with the TC7 clone are comparable to those obtained with the parental cell line. However, some drawbacks related to the experimental system have been highlighted (i.e. low mass balance, adsorption to the plastics), on the basis of which some compounds were excluded from the analysis. In order to check the predictability of the model, a regression analysis has been performed by plotting P(app) values vs. the fraction absorbed in humans (FA, expressed as % of the administered dose). Additional elaborations have highlighted that the specific absorption pathway (passive, active and carrier-mediated) and other factors (i.e. efflux proteins and/or metabolic activity) can strongly affect the robustness of the prediction model. On the basis of the obtained results, TC7 clone has shown to be a model for passive diffusion as reliable as the parental cell line. However, we have remarked the non-suitability of the TC7 cells to predict intestinal absorption: (i) for highly lipophilic compounds; (ii) for poorly absorbed compounds; or (iii) when transporter-mediated routes and/or first pass metabolism are involved. The preliminary study of those factors likely influencing compound biokinetics, as well as the characterization of the cellular model with respect to metabolic and transporter competence, would help in the interpretation of data.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Algorithms
  • Caco-2 Cells*
  • Clone Cells
  • Enterocytes / drug effects
  • Enterocytes / metabolism*
  • Humans
  • Intestinal Absorption*
  • Permeability / drug effects
  • Reproducibility of Results