Diffraction imaging in a He+ ion beam scanning transmission microscope

Microsc Microanal. 2010 Oct;16(5):599-603. doi: 10.1017/S1431927610093682. Epub 2010 Aug 31.

Abstract

The scanning helium ion microscope has been used in transmission mode to investigate both the feasibility of this approach and the utility of the signal content and the image information available. Operating at 40 keV the penetration of the ion beam, and the imaging resolution achieved, in MgO crystals was found to be in good agreement with values predicted by Monte Carlo modeling. The bright-field and annular dark-field signals displayed the anticipated contrasts associated with beam absorption and scattering. In addition, the diffraction of the He ion beam within the sample gave rise to crystallographic contrast effects in the form of thickness fringes and dislocation images. Scanning transmission He ion microscopy thus achieves useful sample penetration and provides nanometer scale resolution, high contrast images of crystalline materials and crystal defects even at modest beam energies.

Publication types

  • Research Support, Non-U.S. Gov't