Recently a novel cell division system comprised of homologues of eukaryotic ESCRT-III (endosomal sorting complex required for transport III) proteins was discovered in the hyperthermophilic crenarchaeote Sulfolobus acidocaldarius. On the basis of this discovery, we undertook a comparative genomic analysis of the machineries for cell division and vesicle formation in Archaea. Archaea possess at least three distinct membrane remodelling systems: the FtsZ-based bacterial-type system, the ESCRT-III-based eukaryote-like system and a putative novel system that uses an archaeal actin-related protein. Many archaeal genomes encode assortments of components from different systems. Evolutionary reconstruction from these findings suggests that the last common ancestor of the extant Archaea possessed a complex membrane remodelling apparatus, different components of which were lost during subsequent evolution of archaeal lineages. By contrast, eukaryotes seem to have inherited all three ancestral systems.