Materials challenges toward proton-conducting oxide fuel cells: a critical review
- PMID: 20818453
- DOI: 10.1039/b902343g
Materials challenges toward proton-conducting oxide fuel cells: a critical review
Abstract
The increasing world population and the need to improve quality of life for a large percentage of human beings are the driving forces for the search for sustainable energy production systems, alternative to fossil fuel combustion. Among the various types of alternative energy production technologies, solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 °C) show the advantage of possible use both for stationary and mobile energy production. To reach the goal of reducing the SOFC operating temperature, proton-conducting oxides are gaining wide interest as electrolyte materials. This critical review provides a broad overview of the most recent progresses obtained tailoring the properties of proton-conducting oxides for fuel cell applications, analyzing and comparing the different strategies proposed to match high-proton conductivity with good chemical stability (170 references).
Similar articles
-
Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.Chem Soc Rev. 2010 Nov;39(11):4370-87. doi: 10.1039/b915141a. Epub 2010 Sep 17. Chem Soc Rev. 2010. PMID: 20848015 Review.
-
Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.ChemSusChem. 2014 Oct;7(10):2811-5. doi: 10.1002/cssc.201402351. Epub 2014 Aug 21. ChemSusChem. 2014. PMID: 25146887
-
Intermediate temperature solid oxide fuel cells.Chem Soc Rev. 2008 Aug;37(8):1568-78. doi: 10.1039/b612060c. Epub 2008 May 28. Chem Soc Rev. 2008. PMID: 18648682
-
Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.Adv Mater. 2012 Jan 10;24(2):195-208. doi: 10.1002/adma.201103102. Epub 2011 Sep 27. Adv Mater. 2012. PMID: 21953861
-
Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.Chem Soc Rev. 2013 Mar 7;42(5):1961-72. doi: 10.1039/c2cs35393h. Epub 2012 Dec 20. Chem Soc Rev. 2013. PMID: 23257778 Review.
Cited by
-
Superprotonic Conductivity in a Metalloporphyrin-Based SMOF (Supramolecular Metal-Organic Framework).Nanomaterials (Basel). 2024 Feb 21;14(5):398. doi: 10.3390/nano14050398. Nanomaterials (Basel). 2024. PMID: 38470729 Free PMC article.
-
Electrode-Supported Protonic Ceramic Electrolysis Cells for Electrochemically Promoted Ammonia Synthesis at Intermediate Temperatures.ACS Omega. 2023 Oct 19;8(43):40299-40308. doi: 10.1021/acsomega.3c04478. eCollection 2023 Oct 31. ACS Omega. 2023. PMID: 37929123 Free PMC article.
-
Interface Diffusion and Compatibility of (Ba,La)FeO3-δ Perovskite Electrodes in Contact with Barium Zirconate and Ceria.ACS Appl Mater Interfaces. 2023 Nov 1;15(43):50225-50236. doi: 10.1021/acsami.3c13013. Epub 2023 Oct 20. ACS Appl Mater Interfaces. 2023. PMID: 37862611 Free PMC article.
-
Durable and High-Performance Thin-Film BHYb-Coated BZCYYb Bilayer Electrolytes for Proton-Conducting Reversible Solid Oxide Cells.ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32395-32403. doi: 10.1021/acsami.3c04627. Epub 2023 Jun 28. ACS Appl Mater Interfaces. 2023. PMID: 37379336 Free PMC article.
-
Environmentally Benign pSOFC for Emissions-Free Energy: Assessment of Nickel Network Resistance in Anodic Ni/BCY15 Nanocatalyst.Nanomaterials (Basel). 2023 May 31;13(11):1781. doi: 10.3390/nano13111781. Nanomaterials (Basel). 2023. PMID: 37299684 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
