VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation

Mol Plant Microbe Interact. 2011 Jan;24(1):129-42. doi: 10.1094/MPMI-09-09-0217.

Abstract

Verticillium dahliae is a soilborne fungus causing vascular wilt in a diverse array of plant species. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall-degrading enzymes (CWDE). The sucrose nonfermenting 1 gene (VdSNF1), which regulates catabolic repression, was disrupted in V. dahliae tomato race 1. Expression of CWDE in the resulting mutants was not induced in inductive medium and in simulated xylem fluid medium. Growth of the mutants was significantly reduced when grown with pectin or galactose as a carbon source whereas, with glucose, sucrose, and xylose, they grew similarly to wild-type and ectopic transformants. The mutants were severely impaired in virulence on tomato and eggplant (final disease severity reduced by an average of 87%). Microscopic observation of the infection behavior of a green fluorescent protein (gfp)-labeled VdSNF1 mutant (70ΔSF-gfp1) showed that it was defective in initial colonization of roots. Cross sections of tomato stem at the cotyledonary level showed that 70ΔSF-gfp1 colonized xylem vessels considerably less than the wild-type strain. The wild-type strain heavily colonized xylem vessels and adjacent parenchyma cells. Quantification of fungal biomass in plant tissues further confirmed reduced colonization of roots, stems, and cotyledons by 70ΔSF-gfp1 relative to that by the wild-type strain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Cell Wall / microbiology*
  • Cotyledon / microbiology
  • DNA Primers
  • Gene Amplification
  • Gene Deletion
  • Mutagenesis
  • Phylogeny
  • Plant Diseases / microbiology*
  • Plant Roots / microbiology
  • Plant Stems / microbiology
  • Polymerase Chain Reaction / methods
  • Protein Serine-Threonine Kinases / genetics*
  • Transcription, Genetic
  • Verticillium / enzymology*
  • Verticillium / genetics
  • Verticillium / growth & development
  • Verticillium / pathogenicity*
  • Virulence / genetics*

Substances

  • DNA Primers
  • SNF1-related protein kinases
  • Protein Serine-Threonine Kinases