Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;23(1):269-79.
doi: 10.1016/j.cellsig.2010.09.011. Epub 2010 Sep 16.

SHP-1 inhibits β-catenin function by inducing its degradation and interfering with its association with TATA-binding protein

Affiliations

SHP-1 inhibits β-catenin function by inducing its degradation and interfering with its association with TATA-binding protein

Mélanie Simoneau et al. Cell Signal. 2011 Jan.

Abstract

β-catenin plays a dual role both as a key effector in the regulation of adherens junctions and as a transcriptional coactivator. Tyrosine phosphorylation of β-catenin is implicated as a means for its release from E-cadherin complexes and correlates with enhanced transcriptional activity. However, it remains unclear whether or not tyrosine phosphorylated β-catenin degrades slower or faster than its unphosphorylated form or transactivates the downstream target genes differently. We have recently demonstrated that tyrosine phosphatase SHP-1 negatively regulates the nuclear transcriptional function of β-catenin. The mechanism by which SHP-1 specifically inhibits β-catenin/TCF transcriptional activity remains, however, to be elucidated. Herein, we demonstrate that inhibition of tyrosine phosphatases with pervanadate induced both c-src-dependent tyrosine phosphorylation and nuclear translocation of β-catenin. Moreover, ectopic expression of SHP-1 but not the inactive form of SHP-1 (C453S) inhibited src-induced tyrosine phosphorylation of β-catenin on tyrosines 86 and 654. SHP-1 expression and mutations of tyrosine-86 and tyrosine-654 to phenylalanine significantly and similarly decreased the transactivation potential of β-catenin on the TOPFLASH reporter. SHP-1 expression as well as mutations of tyrosine-86 and tyrosine-654 to phenylalanine also significantly interfered with the association of β-catenin with TBP. Mutations of tyrosine-86 and/or tyrosine-654 did not markedly alter β-catenin stability whereas SHP-1 expression promoted proteasomal β-catenin degradation through a GSK3β-dependent mechanism. In conclusion, SHP-1 negatively regulates β-catenin transcriptional activity i) by dephosphorylating β-catenin on tyrosines 86 and 654, ii) by impairing its capacity to interact with the basal transcriptional factor TBP and iii) by promoting β-catenin degradation in a GSK3β-dependent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources