Ovate family protein 1 as a plant Ku70 interacting protein involving in DNA double-strand break repair

Plant Mol Biol. 2010 Nov;74(4-5):453-66. doi: 10.1007/s11103-010-9685-5. Epub 2010 Sep 16.

Abstract

The Ku heterodimer, a DNA repair protein complex consisting of 70- and 80-kDa subunits, is involved in the non-homologous end-joining (NHEJ) pathway. Plants are thought to use the NHEJ pathway primarily for the repair of DNA double-strand breaks (DSBs). The Ku70/80 protein has been identified in many plants and been shown to possess several similar functions to its counter protein complex in mammals. In the present study, ovate family protein 1 (AtOFP1) was demonstrated to be a plant Ku-interacting protein by yeast two-hybrid screening and the GST pull-down assay. Truncation analysis revealed that the C-terminal domain of AtKu70 contains interacting sites for AtOFP1. The electrophoretic mobility shift assay (EMSA) indicated that AtOFP1 is also a DNA binding protein with its binding domain at the N-terminus. In 3-week-old seedlings, expression of the AtOFP1 gene increased after exposure to DNA-damaging agents (such as methyl methanesulfonate (MMS) and menadione) in a time dependent manner. Seedlings lacking the AtOFP1 protein were more sensitive to MMS and menadione as compared with wild-type. Furthermore, similar to AtKu70(-/-) and AtKu80(-/-), the AtOFP1(-/-) mutant showed relatively lower NHEJ activity in vivo. Taken together, these results suggest that AtOFP1 may play a role in DNA repair through the NHEJ pathway accompanying with the AtKu protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / drug effects
  • Arabidopsis / genetics*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / chemistry
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Arabidopsis Proteins / physiology*
  • DNA Breaks, Double-Stranded*
  • DNA Repair*
  • DNA-Binding Proteins / metabolism*
  • Mutagens / pharmacology
  • Protein Interaction Mapping
  • Repressor Proteins / chemistry
  • Repressor Proteins / genetics
  • Repressor Proteins / physiology*
  • Two-Hybrid System Techniques

Substances

  • Arabidopsis Proteins
  • DNA-Binding Proteins
  • KU70 protein, Arabidopsis
  • Mutagens
  • Repressor Proteins
  • ovate family protein 1, Arabidopsis