Systematic quantification of negative feedback mechanisms in the extracellular signal-regulated kinase (ERK) signaling network

J Biol Chem. 2010 Nov 19;285(47):36736-44. doi: 10.1074/jbc.M110.148759. Epub 2010 Sep 16.

Abstract

Cell responses are actuated by tightly controlled signal transduction pathways. Although the concept of an integrated signaling network replete with interpathway cross-talk and feedback regulation is broadly appreciated, kinetic data of the type needed to characterize such interactions in conjunction with mathematical models are lacking. In mammalian cells, the Ras/ERK pathway controls cell proliferation and other responses stimulated by growth factors, and several cross-talk and feedback mechanisms affecting its activation have been identified. In this work, we take a systematic approach to parse the magnitudes of multiple regulatory mechanisms that attenuate ERK activation through canonical (Ras-dependent) and non-canonical (PI3K-dependent) pathways. In addition to regulation of receptor and ligand levels, we consider three layers of ERK-dependent feedback: desensitization of Ras activation, negative regulation of MEK kinase (e.g. Raf) activities, and up-regulation of dual-specificity ERK phosphatases. Our results establish the second of these as the dominant mode of ERK self-regulation in mouse fibroblasts. We further demonstrate that kinetic models of signaling networks, trained on a sufficient diversity of quantitative data, can be reasonably comprehensive, accurate, and predictive in the dynamical sense.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extracellular Signal-Regulated MAP Kinases / metabolism*
  • Feedback, Physiological*
  • Humans
  • Immunoblotting
  • Kinetics
  • Mice
  • Mitogen-Activated Protein Kinases / metabolism*
  • NIH 3T3 Cells
  • Phosphorylation
  • Signal Transduction*
  • ras Proteins / metabolism*

Substances

  • Extracellular Signal-Regulated MAP Kinases
  • Mitogen-Activated Protein Kinases
  • ras Proteins