Kallikrein-related peptidases (KLKs) constitute a major family of proteolytic enzymes implicated in the pathogenesis of many diseases, including cancer. Recently, we have suggested that the dog might represent a useful animal model for in vivo KLK studies and sought to investigate the expression patterns of the largely unknown canine KLK family. Along the same lines, in the present report we experimentally characterized five previously unidentified (CANFA)KLKs and investigated their expression in normal and tumorous mammary tissues. We demonstrated that the GenBank sequences that were predicted in silico to represent the canine orthologs of human KLK5, KLK6, KLK7, and KLK8 mRNAs were correct, whereas the one corresponding to the canine KLK4 had a major inconsistency within its 5'-terminus. More specifically, two internal segments of the first intron of KLK4, 78 and 97 bp long, respectively, were wrongfully determined to constitute the initial 175-nucleotide sequence of the KLK4 coding region. (CANFA)KLK8 was further shown to undergo alternative splicing that generated an mRNA transcript missing exon 4 (variant 1). All five (CANFA)KLKs were almost ubiquitously expressed in both cancerous and noncancerous mammary tissues. Lower positivity rates were identified for (CANFA)KLK8 variant 1. A trend for upregulation in tumors was observed for (CANFA)KLK5, (CANFA)KLK7, and (CANFA)KLK8, whereas (CANFA)KLK8 variant 1 tended to be downregulated in cancer. Moreover, a parallel expression of the studied canine KLKs was observed, which suggested a possible participation of the encoded enzymes in interrelated proteolytic cascades taking place in the mammary gland.