Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Dec;54(12):5070-3.
doi: 10.1128/AAC.01058-10. Epub 2010 Sep 20.

Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus

Affiliations

Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus

Diixa Patel et al. Antimicrob Agents Chemother. 2010 Dec.

Abstract

Multidrug resistance efflux pumps contribute to antimicrobial and biocide resistance in Staphylococcus aureus. The detection of strains capable of efflux is time-consuming and labor-intensive using currently available techniques. A simple and inexpensive method to identify such strains is needed. Ethidium bromide is a substrate for all but one of the characterized S. aureus multidrug-resistant (MDR) efflux pumps (NorC), leading us to examine the utility of simple broth microtiter MIC determinations using this compound in identifying efflux-proficient strains. Quantitative reverse transcription-PCR identified the increased expression of one or more MDR efflux pump genes in 151/309 clinical strains (49%). Ethidium bromide MIC testing was insensitive (48%) but specific (92%) in identifying strains with gene overexpression, but it was highly sensitive (95%) and specific (99%) in identifying strains capable of ethidium efflux. The increased expression of norA with or without other genes was most commonly associated with efflux, and in the majority of cases that efflux was inhibited by reserpine. Ethidium bromide MIC testing is a simple and straightforward method to identify effluxing strains and can provide accurate predictions of efflux prevalence in large strain sets in a short period of time.

PubMed Disclaimer

Similar articles

Cited by

References

    1. CLSI. 2006. Approved standard M7-A7. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 7th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
    1. DeMarco, C. E., L. A. Cushing, E. Frempong-Manso, S. M. Seo, T. A. Jaravaza, and G. W. Kaatz. 2007. Efflux-related resistance to norfloxacin, dyes, and biocides in bloodstream isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 51:3235-3239. - PMC - PubMed
    1. Frempong-Manso, E., J. L. Raygada, C. E. DeMarco, S. M. Seo, and G. W. Kaatz. 2009. Inability of a reserpine-based screen to identify strains overexpressing efflux pump genes in clinical isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 33:360-363. - PubMed
    1. Grkovic, S., K. M. Hardie, M. H. Brown, and R. A. Skurray. 2003. Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket. Biochemistry 42:15226-15236. - PubMed
    1. Hassan, K. A., R. A. Skurray, and M. H. Brown. 2007. Active export proteins mediating drug resistance in staphylococci. J. Mol. Microbiol. Biotechnol. 12:180-196. - PubMed

Publication types

MeSH terms