The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals

PLoS One. 2010 Sep 15;5(9):e12709. doi: 10.1371/journal.pone.0012709.

Abstract

Nipah virus (NiV) P gene encodes P protein and three accessory proteins (V, C and W). It has been reported that all four P gene products have IFN antagonist activity when the proteins were transiently expressed. However, the role of those accessory proteins in natural infection with NiV remains unknown. We generated recombinant NiVs lacking V, C or W protein, rNiV(V-), rNiV(C-), and rNiV(W-), respectively, to analyze the functions of these proteins in infected cells and the implications in in vivo pathogenicity. All the recombinants grew well in cell culture, although the maximum titers of rNiV(V-) and rNiV(C-) were lower than the other recombinants. The rNiV(V-), rNiV(C-) and rNiV(W-) suppressed the IFN response as well as the parental rNiV, thereby indicating that the lack of each accessory protein does not significantly affect the inhibition of IFN signaling in infected cells. In experimentally infected golden hamsters, rNiV(V-) and rNiV(C-) but not the rNiV(W-) virus showed a significant reduction in virulence. These results suggest that V and C proteins play key roles in NiV pathogenicity, and the roles are independent of their IFN-antagonist activity. This is the first report that identifies the molecular determinants of NiV in pathogenicity in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Chlorocebus aethiops
  • Cricetinae
  • Henipavirus Infections / virology*
  • Humans
  • Mesocricetus
  • Nipah Virus / genetics
  • Nipah Virus / metabolism*
  • Nipah Virus / pathogenicity*
  • Vero Cells
  • Viral Nonstructural Proteins / genetics
  • Viral Nonstructural Proteins / metabolism*

Substances

  • Viral Nonstructural Proteins