A mixture of "cheats" and "co-operators" can enable maximal group benefit
- PMID: 20856906
- PMCID: PMC2939026
- DOI: 10.1371/journal.pbio.1000486
A mixture of "cheats" and "co-operators" can enable maximal group benefit
Abstract
Is a group best off if everyone co-operates? Theory often considers this to be so (e.g. the "conspiracy of doves"), this understanding underpinning social and economic policy. We observe, however, that after competition between "cheat" and "co-operator" strains of yeast, population fitness is maximized under co-existence. To address whether this might just be a peculiarity of our experimental system or a result with broader applicability, we assemble, benchmark, dissect, and test a systems model. This reveals the conditions necessary to recover the unexpected result. These are 3-fold: (a) that resources are used inefficiently when they are abundant, (b) that the amount of co-operation needed cannot be accurately assessed, and (c) the population is structured, such that co-operators receive more of the resource than the cheats. Relaxing any of the assumptions can lead to population fitness being maximized when cheats are absent, which we experimentally demonstrate. These three conditions will often be relevant, and hence in order to understand the trajectory of social interactions, understanding the dynamics of the efficiency of resource utilization and accuracy of information will be necessary.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Similar articles
-
Toward an evolutionary definition of cheating.Evolution. 2014 Feb;68(2):318-31. doi: 10.1111/evo.12266. Epub 2013 Oct 16. Evolution. 2014. PMID: 24131102
-
Cheating and resistance to cheating in natural populations of the bacterium Pseudomonas fluorescens.Evolution. 2017 Oct;71(10):2484-2495. doi: 10.1111/evo.13328. Epub 2017 Sep 14. Evolution. 2017. PMID: 28833073
-
Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa.J Evol Biol. 2015 Dec;28(12):2264-74. doi: 10.1111/jeb.12751. Epub 2015 Sep 28. J Evol Biol. 2015. PMID: 26348785
-
Cooperation and deception in primates.Infant Behav Dev. 2017 Aug;48(Pt A):38-44. doi: 10.1016/j.infbeh.2016.11.007. Epub 2016 Nov 16. Infant Behav Dev. 2017. PMID: 27865584 Review.
-
Conspiracy Theories: Evolved Functions and Psychological Mechanisms.Perspect Psychol Sci. 2018 Nov;13(6):770-788. doi: 10.1177/1745691618774270. Epub 2018 Sep 19. Perspect Psychol Sci. 2018. PMID: 30231213 Free PMC article. Review.
Cited by
-
Synthetic approaches to understanding biological constraints.Curr Opin Chem Biol. 2012 Aug;16(3-4):323-8. doi: 10.1016/j.cbpa.2012.05.199. Epub 2012 Jun 8. Curr Opin Chem Biol. 2012. PMID: 22682889 Free PMC article. Review.
-
Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast.Genome Biol Evol. 2015 Nov 27;7(12):3496-510. doi: 10.1093/gbe/evv238. Genome Biol Evol. 2015. PMID: 26615217 Free PMC article.
-
The fate of cooperation during range expansions.PLoS Comput Biol. 2013;9(3):e1002994. doi: 10.1371/journal.pcbi.1002994. Epub 2013 Mar 28. PLoS Comput Biol. 2013. PMID: 23555227 Free PMC article.
-
Using drug-loaded pH-responsive poly(4-vinylpyridine) microspheres as a new strategy for intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation.World J Microbiol Biotechnol. 2018 Sep 11;34(10):146. doi: 10.1007/s11274-018-2533-5. World J Microbiol Biotechnol. 2018. PMID: 30206729
-
Defectors Can Create Conditions That Rescue Cooperation.PLoS Comput Biol. 2015 Dec 21;11(12):e1004645. doi: 10.1371/journal.pcbi.1004645. eCollection 2015 Dec. PLoS Comput Biol. 2015. PMID: 26690946 Free PMC article.
References
-
- Naumov G. I, Naumova E. S, Sancho E. D, Korhola M. P. Polymeric SUC genes in natural populations of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1996;135:31–35. - PubMed
-
- Santos E, Rodriguez L, Elorza M. V, Sentandreu R. Uptake of sucrose by Saccharomyces cerevisiae. Arch Biochem Biophys. 1982;216:652–660. - PubMed
-
- Badotti F, Batista A. S, Stambuk B. U. Sucrose active transport and fermentation be Saccharomyces cerevisiae. Braz Arch Biol Technol. 2006;49:115–123.
-
- Stambuk B. U, Batista A. S, De Araujo P. S. Kinetics of active sucrose transport in Saccharomyces cerevisiae. J Biosci Bioeng. 2000;89:212–214. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
