Molecular signatures and new candidates to target the pathogenesis of rheumatoid arthritis

Physiol Genomics. 2010 Nov 29;42A(4):267-82. doi: 10.1152/physiolgenomics.00004.2010. Epub 2010 Sep 21.

Abstract

Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease of unknown etiology and pronounced interpatient heterogeneity. To characterize RA at the molecular level and to uncover pathomechanisms, we performed genome-wide gene expression analysis. We identified a set of 1,054 genes significantly deregulated in pair-wise comparisons between RA and osteoarthritis (OA) patients, RA and normal donors (ND), or OA and ND. Correlation analysis revealed gene sets regulated identically in all three groups. As a prominent example secreted phosphoprotein 1 (SPP1) was identified to be significantly upregulated in RA compared with both OA and ND. SPP1 expression was found to correlate with genes expressed during an inflammatory response, T-cell activation and apoptosis, suggesting common underlying regulatory networks. A subclassification of RA patients was achieved on the basis of proteoglycan 4 (PRG4) expression, distinguishing PRG4 high and low expressors and reflecting the heterogeneity of the disease. In addition, we found that low PRG4 expression was associated with a more aggressive disease stage, which is in accordance with PRG4 loss-of-function mutations causing camptodactyly-arthropathy-coxa vara-pericarditis syndrome. Altogether we provide evidence for molecular signatures of RA and RA subclasses, sets of new candidate genes as well as for candidate gene networks, which extend our understanding of disease mechanisms and may lead to an improved diagnosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Arthritis, Rheumatoid / genetics*
  • Arthritis, Rheumatoid / pathology
  • Female
  • Gene Expression Profiling*
  • Humans
  • Male
  • Middle Aged
  • Proteoglycans / genetics
  • Proteoglycans / metabolism

Substances

  • PRG4 protein, human
  • Proteoglycans