Ascites macrophages in advanced epithelial ovarian cancer (AdEOC) are involved in cancer metastasis and progression by modifying the tumor microenvironment. However, the precise mechanisms of cell-to-cell interaction between macrophages and tumor cells are still unclear. This study focused on the activation of signal transducer and activator of transcription 3 (Stat3) which is a critical signal transduction molecule at a point of convergence for numerous oncogenic signaling pathways as well as controlling the M2-poralization of macrophages. AdEOC ascites, in which high concentration of interleukin (IL)-6, IL-10, growth-related oncogene-alpha and vascular endothelial growth factor were detected, stimulated the proliferation of SKOV3 cells, a human ovarian cancer cell line. The simultaneous blocking of IL-6 and IL-10 by neutralizing antibodies suppressed ascites-induced tumor cell proliferation. Stat3 activation in SKOV3 cells was induced by co-culture with macrophages especially with macrophage colony stimulating factor-primed M2 macrophages but lesser extent with granulocyte-macrophage colony stimulating factor-primed immature macrophages. Cyclin-D1 expression in SKOV3 cells was also significantly induced by co-culture with macrophages. Blocking of Stat3 in macrophages by small interfering RNA inhibited the production of IL-6 and IL-10 by macrophages, and suppressed Stat3 activation and cyclin-D1 induction in co-cultured SKOV3 cells. Stat3 activation in SKOV3 cells was abrogated by simultaneous neutralization of IL-6 and IL-10. These results indicate that Stat3 activation by IL-6 and IL-10 plays an important role in cell-to-cell interaction between tumor cells and macrophages in the ascites of AdEOC.
© 2010 Japanese Cancer Association.