Glassy dynamics, spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods

Phys Rev Lett. 2010 Aug 20;105(8):088302. doi: 10.1103/PhysRevLett.105.088302. Epub 2010 Aug 16.


Using simulations we identify three dynamic regimes in supersaturated isotropic fluid states of short hard rods: (i) for moderate supersaturations, we observe nucleation of multilayered crystalline clusters; (ii) at higher supersaturation, we find nucleation of small crystallites which arrange into long-lived locally favored structures that get kinetically arrested; and (iii) at even higher supersaturation, the dynamic arrest is due to the conventional cage-trapping glass transition. For longer rods we find that the formation of the (stable) smectic phase out of a supersaturated isotropic state is strongly suppressed by an isotropic-nematic spinodal instability that causes huge spinodal-like orientation fluctuations with nematic clusters diverging in size. Our results show that glassy dynamics and spinodal instabilities set kinetic limits to nucleation in highly supersaturated hard-rod fluids.