Optically generated 2-dimensional photonic cluster state from coupled quantum dots

Phys Rev Lett. 2010 Aug 27;105(9):093601. doi: 10.1103/PhysRevLett.105.093601. Epub 2010 Aug 24.


We propose a method to generate a two-dimensional cluster state of polarization encoded photonic qubits from two coupled quantum dot emitters. We combine the proposal for generating one-dimensional cluster state strings from a single dot, with a new proposal for an induced conditional phase gate between the two quantum dots. The entanglement between the two dots translates to entanglement between the two photonic cluster state strings. Further interpair coupling of the quantum dots using cavities and waveguides can lead to a two-dimensional cluster sheet, the importance of which stems from the fact that it is a universal resource for quantum computation. Analysis of errors indicates that our proposal is feasible with current technology. Crucially, the emitted photons need not have identical frequencies, and so there are no constraints on the resonance energies for the quantum dots.