Fundamental limit of nanophotonic light trapping in solar cells

Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17491-6. doi: 10.1073/pnas.1008296107. Epub 2010 Sep 27.

Abstract

Establishing the fundamental limit of nanophotonic light-trapping schemes is of paramount importance and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping demonstrated that absorption enhancement in a medium cannot exceed a factor of 4n(2)/sin(2)θ, where n is the refractive index of the active layer, and θ is the angle of the emission cone in the medium surrounding the cell. This theory, however, is not applicable in the nanophotonic regime. Here we develop a statistical temporal coupled-mode theory of light trapping based on a rigorous electromagnetic approach. Our theory reveals that the conventional limit can be substantially surpassed when optical modes exhibit deep-subwavelength-scale field confinement, opening new avenues for highly efficient next-generation solar cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Absorption
  • Engineering / methods*
  • Light*
  • Models, Theoretical*
  • Nanostructures / chemistry*
  • Solar Energy / statistics & numerical data*