Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth

PLoS One. 2010 Sep 23;5(9):e12920. doi: 10.1371/journal.pone.0012920.

Abstract

Background: Prostate cancer recurrence involves increased growth of cancer epithelial cells, as androgen dependent prostate cancer progresses to castrate resistant prostate cancer (CRPC) following initial therapy. Understanding CRPC prostate regrowth will provide opportunities for new cancer therapies to treat advanced disease.

Methodology/principal findings: Elevated chemokine expression in the prostate stroma of a castrate resistant mouse model, Tgfbr2(fspKO), prompted us to look at the involvement of bone marrow derived cells (BMDCs) in prostate regrowth. We identified bone marrow cells recruited to the prostate in GFP-chimeric mice. A dramatic increase in BMDC recruitment for prostate regrowth occurred three days after exogenous testosterone implantation. Recruitment led to incorporation of BMDCs within the prostate epithelia. Immunofluorescence staining suggested BMDCs in the prostate coexpressed androgen receptor; p63, a basal epithelial marker; and cytokeratin 8, a luminal epithelial marker. A subset of the BMDC population, mesenchymal stem cells (MSCs), were specifically found to be incorporated in the prostate at its greatest time of remodeling. Rosa26 expressing MSCs injected into GFP mice supported MSC fusion with resident prostate epithelial cells through co-localization of β-galactosidase and GFP during regrowth. In a human C4-2B xenograft model of CRPC, MSCs were specifically recruited. Injection of GFP-labeled MSCs supported C4-2B tumor progression by potentiating canonical Wnt signaling. The use of MSCs as a targeted delivery vector for the exogenously expressed Wnt antagonist, secreted frizzled related protein-2 (SFRP2), reduced tumor growth, increased apoptosis and potentiated tumor necrosis.

Conclusions/significance: Mesenchymal stem cells fuse with prostate epithelia during the process of prostate regrowth. MSCs recruited to the regrowing prostate can be used as a vehicle for transporting genetic information with potential therapeutic effects on castrate resistant prostate cancer, for instance by antagonizing Wnt signaling through SFRP2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bone Marrow Cells / cytology*
  • Bone Marrow Cells / metabolism
  • Cell Line, Tumor
  • Cell Proliferation
  • Disease Models, Animal
  • Humans
  • Male
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mice, Transgenic
  • Prostate / cytology
  • Prostate / growth & development*
  • Prostate / metabolism
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / physiopathology
  • Proteins / genetics
  • Proteins / metabolism
  • RNA, Untranslated
  • Signal Transduction
  • Wnt Proteins / genetics
  • Wnt Proteins / metabolism

Substances

  • Gt(ROSA)26Sor non-coding RNA, mouse
  • Proteins
  • RNA, Untranslated
  • Wnt Proteins