A unique single carboxylate-bridged spin-frustrated chiral Mn(II) metallatriangle

Dalton Trans. 2010 Nov 14;39(42):10286-92. doi: 10.1039/c0dt00613k. Epub 2010 Oct 4.

Abstract

The reaction between Hmbpymca ligand (prepared in situ from the hydrolysis of 5-methyl-4-cyano-bispyrimidine with NaOH and further neutralization with 2 M HCl) and Mn(ClO(4))(2)·4H(2)O in 1:1 molar ratio afforded the triangulo-trimanganese(II) complex [Mn(3)(bpymca)(3)(H(2)O)(6)]Cl(3)·6H(2)O 1. The chloride anions in this complex come from the HCl used in the neutralization process. The molecular structure of 1 consists of cationic molecular triangles [Mn(3)(μ-mbpymca)(3)(H(2)O)(6)](3+) with C(3) symmetry, chloride anions and crystallization water molecules, all of them involved in an extensive network of hydrogen bonds, leading to a chiral network. Within the [Mn(3)(μ-mbpymca)(3)(H(2)O)(6)](3+) cations, seven-coordinated Mn(II) ions are bridged by both oxygen atoms of the carboxylate groups and exhibit a MnO(5)N(2) compressed pentagonal bipyramidal coordination environment. The temperature dependence of the magnetic susceptibility shows the presence of weak antiferromagnetic interactions between Mn(II) ions mediated by the carboxylate group of the mbpymca ligand and the existence of a 3D antiferromagnetic ordering below 4 K, which has its origin in the AF inter-trimer exchange interactions mediated by the strong hydrogen bonds present in the crystal of 1. The experimental magnetic susceptibility data above 7 K could be satisfactorily fitted to the theoretical analytical expression derived from the spin Hamiltonian H = -J(S(1)S(2) + S(1)S(3) + S(2)S(3)) with J = -0.782(3) cm(-1) and g = 2.092(3). The model predicts a degenerate ground state with an S = 1/2, which is typical of triangular trimetallic spin frustrated systems containing metal with non-integer spins. DFT calculations were performed on the molecular structure as found in the solid state to support the experimental J value and the Mn-O(carb)-Mn as the primarily exchange pathway.