Spatial and temporal organization of the E. coli PTS components

EMBO J. 2010 Nov 3;29(21):3630-45. doi: 10.1038/emboj.2010.240. Epub 2010 Oct 5.

Abstract

The phosphotransferase system (PTS) controls preferential use of sugars in bacteria. It comprises of two general proteins, enzyme I (EI) and HPr, and various sugar-specific permeases. Using fluorescence microscopy, we show here that EI and HPr localize near the Escherichia coli cell poles. Polar localization of each protein occurs independently, but HPr is released from the poles in an EI- and sugar-dependent manner. Conversely, the β-glucoside-specific permease, BglF, localizes to the cell membrane. EI, HPr and BglF control the β-glucoside utilization (bgl) operon by modulating the activity of the BglG transcription factor; BglF inactivates BglG by membrane sequestration and phosphorylation, whereas EI and HPr activate it by an unknown mechanism in response to β-glucosides availability. Using biochemical, genetic and imaging methodologies, we show that EI and HPr interact with BglG and affect its subcellular localization in a phosphorylation-independent manner. Upon sugar stimulation, BglG migrates from the cell periphery to the cytoplasm through the poles. Hence, the PTS components appear to control bgl operon expression by ushering BglG between the cellular compartments. Our results reinforce the notion that signal transduction in bacteria involves dynamic localization of proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Blotting, Western
  • Cell Membrane / metabolism
  • Cytoplasm / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / growth & development
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Glucosides / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Microscopy, Fluorescence
  • Operon / genetics
  • Phosphoenolpyruvate Sugar Phosphotransferase System / genetics
  • Phosphoenolpyruvate Sugar Phosphotransferase System / metabolism*
  • Phosphorylation
  • Phosphotransferases (Nitrogenous Group Acceptor) / genetics
  • Phosphotransferases (Nitrogenous Group Acceptor) / metabolism*
  • Protein Kinases / genetics
  • Protein Kinases / metabolism*
  • Protein Transport
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism*
  • Subcellular Fractions
  • Two-Hybrid System Techniques

Substances

  • Bacterial Proteins
  • BglF protein, E coli
  • Escherichia coli Proteins
  • Glucosides
  • Membrane Proteins
  • RNA-Binding Proteins
  • antiterminator proteins, Bacteria
  • Protein Kinases
  • Phosphoenolpyruvate Sugar Phosphotransferase System
  • phosphocarrier protein HPr
  • Phosphotransferases (Nitrogenous Group Acceptor)
  • phosphoenolpyruvate-protein phosphotransferase