Purpose: To assess the effect on visual acuity of compensating fixation instability by controlling retinal image motion in people with macular disease.
Methods: Ten patients with macular disease participated in this study. Crowded and noncrowded visual acuity were measured using an eye tracking system to compensate for fixation instability. Four conditions, corresponding to four levels of retinal image motion, were tested: no compensation (normal motion), partial compensation (reduced motion), total compensation (no motion), and overcompensation (increased motion). Fixation stability and the number of preferred retinal loci were also measured.
Results: Modulating retinal image motion had the same effect on crowded and noncrowded visual acuity (P = 0.601). When fixation instability was overcompensated, acuity worsened by 0.1 logMAR units (P < 0.001) compared with baseline (no compensation) and remained equal to baseline for all other conditions.
Conclusions: In people with macular disease, retinal image motion caused by fixation instability does not reduce either crowded or noncrowded visual acuity. Acuity declines when fixation instability is overcompensated, showing limited tolerance to increased retinal image motion. The results provide evidence that fixation instability does not improve visual acuity and may be a consequence of poor oculomotor control.