Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere

Nature. 2010 Oct 14;467(7317):828-31. doi: 10.1038/nature09401. Epub 2010 Oct 3.


Strong evidence exists that water is carried from the surface into the upper mantle by hydrous minerals in the uppermost 10-12 km of subducting lithosphere, and more water may be added as the lithosphere bends and goes downwards. Significant amounts of that water are released as the lithosphere heats up, triggering earthquakes and fluxing arc volcanism. In addition, there is experimental evidence for high solubility of water in olivine, the most abundant mineral in the upper mantle, for even higher solubility in olivine's high-pressure polymorphs, wadsleyite and ringwoodite, and for the existence of dense hydrous magnesium silicates that potentially could carry water well into the lower mantle (deeper than 1,000 km). Here we compare experimental and seismic evidence to test whether patterns of seismicity and the stabilities of these potentially relevant hydrous phases are consistent with a wet lithosphere. We show that there is nearly a one-to-one correlation between dehydration of minerals and seismicity at depths less than about 250 km, and conclude that the dehydration of minerals is the trigger of instability that leads to seismicity. At greater depths, however, we find no correlation between occurrences of earthquakes and depths where breakdown of hydrous phases is expected. Lastly, we note that there is compelling evidence for the existence of metastable olivine (which, if present, can explain the distribution of deep-focus earthquakes) west of and within the subducting Tonga slab and also in three other subduction zones, despite metastable olivine being incompatible with even extremely small amounts of water (of the order of 100 p.p.m. by weight). We conclude that subducting slabs are essentially dry at depths below 400 km and thus do not provide a pathway for significant amounts of water to enter the mantle transition zone or the lower mantle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.