Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses

Microbiology. 2011 Feb;157(Pt 2):301-312. doi: 10.1099/mic.0.041053-0. Epub 2010 Oct 7.


We have investigated the response of the cyanobacterium Synechocystis sp. PCC 6803 during growth at very low O2 concentration (bubbled with 99.9 % N(2)/0.1 % CO2). Significant transcriptional changes upon low-O2 incubation included upregulation of a cluster of genes that contained psbA1 and an operon that includes a gene encoding the two-component regulatory histidine kinase, Hik31. This regulatory cluster is of particular interest, since there are virtually identical copies on both the chromosome and plasmid pSYSX. We used a knockout mutant lacking the chromosomal copy of hik31 and studied differential transcription during the aerobic-low-O2 transition in this ΔHik31 strain and the wild-type. We observed two distinct responses to this transition, one Hik31 dependent, the other Hik31 independent. The Hik31-independent responses included the psbA1 induction and genes involved in chlorophyll biosynthesis. In addition, there were changes in a number of genes that may be involved in assembling or stabilizing photosystem (PS)II, and the hox operon and the LexA-like protein (Sll1626) were upregulated during low-O2 growth. This family of responses mostly focused on PSII and overall redox control. There was also a large set of genes that responded differently in the absence of the chromosomal Hik31. In the vast majority of these cases, Hik31 functioned as a repressor and transcription was enhanced when Hik31 was deleted. Genes in this category encoded both core and peripheral proteins for PSI and PSII, the main phycobilisome proteins, chaperones, the ATP synthase cluster and virtually all of the ribosomal proteins. These findings, coupled with the fact that ΔHik31 grew better than the wild-type under low-O2 conditions, suggested that Hik31 helps to regulate growth and overall cellular homeostasis. We detected changes in the transcription of other regulatory genes that may compensate for the loss of Hik31. We conclude that Hik31 regulates an important series of genes that relate to energy production and growth and that help to determine how Synechocystis responds to changes in O2 conditions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Gene Expression Regulation, Bacterial*
  • Histidine Kinase
  • Multigene Family
  • Mutation
  • Oligonucleotide Array Sequence Analysis
  • Operon
  • Oxygen / metabolism*
  • Protein Kinases / genetics
  • Protein Kinases / metabolism*
  • RNA, Bacterial / genetics
  • Synechocystis / enzymology
  • Synechocystis / genetics*
  • Synechocystis / growth & development


  • Bacterial Proteins
  • RNA, Bacterial
  • Protein Kinases
  • Histidine Kinase
  • Oxygen