Present work on indole-3-acetic acid (IAA)-induced adventitious rooting in sunflower hypocotyl highlights a clear demarcation of nitric oxide (NO)-dependent and NO-independent roles of auxin in this developmental process. Of the three phases of adventitious rooting, induction is strictly auxin-dependent though initiation and extension are regulated by an interaction of IAA with NO. A vital role of auxin-efflux transporters (PIN) is also evident from 1-napthylphthalamic acid (NPA)-triggered suppression of adventitious roots (AR). Use of actin depolymerizing agent, Latrunculin B (Lat B), has demonstrated the necessity of functional actin filaments in auxin-induced AR response, possibly through its effect on actin-mediated recycling of auxin transporter proteins. Thus, evidence for a linkage between IAA, NO and actin during AR formation has been established.
© 2010 Landes Bioscience