The importance of the descending monoamine system for the pain experience and its treatment

F1000 Med Rep. 2009 Oct 29:1:83. doi: 10.3410/M1-83.

Abstract

Brainstem and midbrain areas engage descending facilitatory and inhibitory neurones to potentiate or suppress the passage of sensory inputs from spinal loci to the brain. The balance between descending controls, both excitatory and inhibitory, can be altered in various pain states and can critically determine the efficacy of certain analgesic drugs. There is good evidence for a prominent α(2) adrenoceptor-mediated inhibitory system and for 5-HT(3) receptor-mediated excitatory control of spinal cord activity that originates in supraspinal areas. Given the multiple roles of these transmitters in pain and functions such as sleep, depression, and anxiety, the link between spinal and supraspinal processing of noxious inputs (via the monoamine transmitters) could be pivotal for linking the sensory and affective components of pain and their common co-morbidities, and also may potentially explain differences in pain scores and treatment outcomes in the patient population.