The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic-acid methyl ester has potent anti-diabetic effects in diet-induced diabetic mice and Lepr(db/db) mice

J Biol Chem. 2010 Dec 24;285(52):40581-92. doi: 10.1074/jbc.M110.176545. Epub 2010 Oct 18.

Abstract

The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-oic-acid (CDDO) and its methyl ester (CDDO-Me) are undergoing clinical trials in cancer and leukemia therapy. Here we report that CDDO-Me ameliorates diabetes in high fat diet-fed type 2 diabetic mice and in Lepr(db/db) mice. CDDO-Me reduces proinflammatory cytokine expression in these animals. Oral CDDO-Me administration reduces total body fat, plasma triglyceride, and free fatty acid levels. It also improves glucose tolerance and insulin tolerance tests. Its potent glucose-lowering activity results from enhanced insulin action. Hyperinsulinemic-euglycemic clamp reveals an increased glucose infusion rate required to maintain euglycemia and showed a significant increase in muscle-specific insulin-stimulated glucose uptake (71% soleus, 58% gastrocnemius) and peripheral glucose clearance as documented by a 48% increase in glucose disposal rate. CDDO-Me activates AMP-activated protein kinase (AMPK) and via LKB1 activation in muscle and liver in vivo. Treatment of isolated hepatocytes with CDDO-Me directly stimulates AMPK activity and LKB1 phosphorylation and decreases acetyl-coA carboxylase activity; it also down-regulates lipogenic gene expression, suppresses gluconeogenesis, and increases glucose uptake. Inhibition of AMPK phosphorylation using compound C and lentiviral-mediated knockdown of AMPK completely blocks the CDDO-Me-induced effect on hepatocytes as well as C(2)C(12) cells. We conclude that the triterpenoid CDDO-Me has potent anti-diabetic action in diabetic mouse models that is mediated at least in part through AMPK activation. The in vivo anti-diabetogenic effects occur at a dose substantially lower than that used for anti-leukemia therapy. We suggest that CDDO-Me holds promise as a potential anti-diabetic agent.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / genetics
  • AMP-Activated Protein Kinases / metabolism
  • Acetyl-CoA Carboxylase / genetics
  • Acetyl-CoA Carboxylase / metabolism
  • Adipose Tissue / metabolism
  • Animals
  • Diabetes Mellitus, Experimental / blood
  • Diabetes Mellitus, Experimental / drug therapy*
  • Diabetes Mellitus, Experimental / genetics
  • Diet / adverse effects*
  • Enzyme Activation / drug effects
  • Enzyme Activation / genetics
  • Fatty Acids, Nonesterified / blood
  • Glucose / metabolism
  • Hypoglycemic Agents / pharmacology*
  • Hypoglycemic Agents / therapeutic use
  • Insulin / blood
  • Mice
  • Mice, Mutant Strains
  • Muscle, Skeletal / metabolism
  • Oleanolic Acid / analogs & derivatives*
  • Oleanolic Acid / pharmacology
  • Oleanolic Acid / therapeutic use
  • Phosphorylation / drug effects
  • Phosphorylation / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Triglycerides / blood

Substances

  • Fatty Acids, Nonesterified
  • Hypoglycemic Agents
  • Insulin
  • Triglycerides
  • Oleanolic Acid
  • bardoxolone methyl
  • Protein Serine-Threonine Kinases
  • Stk11 protein, mouse
  • AMP-Activated Protein Kinases
  • Acetyl-CoA Carboxylase
  • Glucose