Computerized assessment of pulmonary fissure integrity using high resolution CT

Med Phys. 2010 Sep;37(9):4661-72. doi: 10.1118/1.3475937.

Abstract

Purpose: Knowledge of pulmonary interlobar fissure integrity is of interest in a number of clinical and investigational applications. The authors developed and tested a high resolution CT based automated computerized scheme for this purpose.

Methods: The fissure integrity assessment scheme consists of the following steps: (1) Fissure detection, (2) individual fissure identification, (3) fissure type determination, (4) "complete" interlobe surface estimation, and (5) fissure integrity estimation. For evaluation purposes, 50 anonymized chest CT examinations were ascertained and the complete and "incomplete" regions of the fissures of interest were manually marked by two experienced radiologists. After applying the scheme to the same examinations, differences among fissure percent completeness estimates based on the radiologists' manual markings and the automated computerized scheme were computed and compared.

Results: Average differences in estimated fissure percent completeness (integrity) between the results of the computerized scheme and that based on each of the two radiologists' markings were 6.88% +/- 5.86%, 9.57% +/- 7.77%, and 4.19% +/- 5.64% for the right major fissures, the right minor fissures, and the left major fissures, respectively. The differences between results based on radiologists' markings for the same fissures were 4.27% +/- 3.32%, 7.02% +/- 5.54%, and 4.23% +/- 4.93%, respectively. The difference among the three matched measurement sets for each fissure were statistically significant (Friedman's test, p < or = 0.005) but paired comparisons showed that much of the observed difference was related to inter-reader differences rather than reader-computerized scheme differences. Computerized estimates were correlated with each of the radiologist's estimates (Spearman, p < 0.0001).

Conclusions: While variability between readers-based estimates of fissure integrity was smaller than differences between the computerized scheme and each of the readers, the result reported here are quite encouraging in that the magnitude of these differences were in the same magnitude, demonstrating the feasibility of using a computerized scheme for this purpose.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Humans
  • Lung Diseases / complications
  • Lung Diseases / diagnostic imaging*
  • Observer Variation
  • Tomography, X-Ray Computed / methods*