Phosphorescence quenching microrespirometry of skeletal muscle in situ

Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H135-43. doi: 10.1152/ajpheart.00626.2010. Epub 2010 Oct 22.

Abstract

We have developed an optical method for the evaluation of the oxygen consumption (Vo(2)) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po(2), together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po(2) values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po(2) decreased rapidly and the initial slope of the ODC was used to calculate the Vo(2). Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of Vo(2). The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was Vo(2) = 123.4 ± 13.4 (SE) nl O(2)/cm(3) · s (N = 38, within 6 muscles) at a baseline interstitial Po(2) of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Luminescent Measurements / methods
  • Muscle, Skeletal / physiology*
  • Oxygen Consumption / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • Spirometry / methods*