Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 15;213(Pt 22):3769-77.
doi: 10.1242/jeb.046946.

Sensing the strike of a predator fish depends on the specific gravity of a prey fish

Affiliations

Sensing the strike of a predator fish depends on the specific gravity of a prey fish

William J Stewart et al. J Exp Biol. .

Abstract

The ability of a predator fish to capture a prey fish depends on the hydrodynamics of the prey and its behavioral response to the predator's strike. Despite the importance of this predator-prey interaction to the ecology and evolution of a diversity of fish, it is unclear what factors dictate a fish's ability to evade capture. The present study evaluated how the specific gravity of a prey fish's body affects the kinematics of prey capture and the signals detected by the lateral line system of the prey during the strike of a suction-feeding predator. The specific gravity of zebrafish (Danio rerio) larvae was measured with high precision from recordings of terminal velocity in solutions of varying density. This novel method found that specific gravity decreased by ∼5% (from 1.063, N=8, to 1.011, N=35) when the swim bladder inflates. To examine the functional consequences of this change, we developed a mathematical model of the hydrodynamics of prey in the flow field created by a suction-feeding predator. This model found that the observed decrease in specific gravity due to swim bladder inflation causes an 80% reduction of the flow velocity around the prey's body. Therefore, swim bladder inflation causes a substantial reduction in the flow signal that may be sensed by the lateral line system to evade capture. These findings demonstrate that the ability of a prey fish to sense a predator depends crucially on the specific gravity of the prey.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources