On the directed gas phase synthesis of the imidoborane molecule (HNBH)--an isoelectronic molecule of acetylene (HCCH)

J Phys Chem A. 2010 Nov 25;114(46):12148-54. doi: 10.1021/jp107210d. Epub 2010 Nov 1.


The elementary reaction of ground state boron atoms, (B((2)P(j))), with ammonia (NH(3)(X(1)A(1))) was conducted under single collision conditions at a collision energy of 20.5 ± 0.4 kJ mol(-1) in a crossed molecular beams machine. Combined with electronic structure calculations, our experimental results suggested that the reaction was initiated by a barrier-less addition of the boron atom to the nonbonding electron pair of the nitrogen atom forming a weakly bound BNH(3) collision complex. This intermediate underwent a hydrogen shift to a doublet HBNH(2) radical that decomposed via atomic hydrogen loss to at least the imidoborane (HBNH(X(1)Σ(+)) molecule, an isoelectronic species of acetylene (HCCH(X(1)Σ(g)(+))). Our studies are also discussed in light of the isoelectronic C(2)H(3) potential energy surface accessed via the isoelectronic carbon-methyl system.