iPS cells: a source of cardiac regeneration

J Mol Cell Cardiol. 2011 Feb;50(2):327-32. doi: 10.1016/j.yjmcc.2010.10.026. Epub 2010 Oct 30.

Abstract

For the treatment of heart failure, a new strategy to improve cardiac function and inhibit cardiac remodeling needs to be established. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are pluripotent cells that can differentiate into cell types from all three germ layers both in vitro and in vivo. The therapeutic effect of ES/iPS cell-derived progeny was reported in animal model. Mouse and human somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by the transduction of four transcription factors, Oct 3/4, Sox2, Klf4, and c-Myc. However, the low induction efficiency hinders the clinical application of iPS technology, and efforts have been made to improve the reprogramming efficiency. There are variations in the characteristics in ES/iPS cell lines, and the further understanding is necessary for the applications of ES/iPS cell technology. Some improvements were also made in the methods to induce cardiomyocytes from ES/iPS cells efficiently. This review article is focused on generation of iPS cells, cardiomyocyte differentiation from ES/iPS cells, and transplantation of derived cardiomyocytes.This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Differentiation
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism
  • Heart / physiology*
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism*
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / transplantation
  • Pluripotent Stem Cells / cytology
  • Pluripotent Stem Cells / metabolism
  • Regeneration*