Array tomography: semiautomated image alignment

Cold Spring Harb Protoc. 2010 Nov 1;2010(11):pdb.prot5527. doi: 10.1101/pdb.prot5527.

Abstract

Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. Successful array tomography requires that the captured images be properly stacked and aligned, and the software to achieve these ends is freely available. This protocol describes the construction of volumetric image stacks from images of fluorescently labeled arrays for three-dimensional image visualization, analysis, and archiving.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / anatomy & histology
  • Imaging, Three-Dimensional / methods*
  • Immunohistochemistry / methods
  • Microscopy, Fluorescence / methods
  • Microtomy / methods
  • Rodentia / anatomy & histology
  • Staining and Labeling / methods
  • Tissue Embedding / methods
  • Tomography / methods*