Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar;65(3):698-712.
doi: 10.1111/j.1558-5646.2010.01163.x. Epub 2010 Nov 2.

Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus)

Affiliations

Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus)

Adam J Bewick et al. Evolution. 2011 Mar.

Abstract

DM-W is a dominant, female-specific, regulator of sex determination in the African clawed frog Xenopus laevis. This gene is derived from partial duplication of DMRT1, a male-related autosomal gene. We set out to better understand sex determination in Xenopus by studying this pair of genes. We found that DM-W evolved in Xenopus after divergence from the sister genus Silurana but before divergence of X. laevis and X. clivii, and that DM-W arose from partial duplication of DMRT1β, which is one of the two DMRT1 paralogs in the tetraploid ancestor of Xenopus. Using the rate ratio of nonsynonymous to synonymous substitutions per site and multilocus polymorphism data, we show that DM-W evolved non-neutrally. By cloning paralogs and using a pyrosequencing assay, we also demonstrate that DMRT1 underwent phylogenetically biased pseudogenization after polyploidization, and that expression of this gene is regulated by mechanisms that vary through development. One explanation for these observations is that the expression domain of DMRT1β was marginalized, which would explain why this paralog is dispensable in Xenopus polyploids and why DM-W has a narrow expression domain. These findings illustrate how evolution of the genetic control of stable phenotypes is facilitated by redundancy, degeneration, and compartmentalized regulation.

PubMed Disclaimer

Similar articles

Cited by