Astrocytes are GABAergic cells that modulate microglial activity

Glia. 2011 Jan;59(1):152-65. doi: 10.1002/glia.21087.


GABA is assumed to function in brain only as an inhibitory neurotransmitter. Here we report a much broader CNS role. We show that human astrocytes are GABAergic cells, and that human microglia are GABAceptive cells. We show that in adult human brain tissue, astrocytes immunostain for the GABA synthesizing enzyme GAD 67, the GABA metabolizing enzyme GABA-T and the GABA(A) and GABA(B) receptors. The intensity of staining is comparable or greater to that observed for known inhibitory neurons. We show that cultured human astrocytes strongly express the mRNA and protein for GAD 67, as well as GABA-T, and the GABA(A) and GABA(B) receptors. We further show that cultured human microglia express the mRNA and protein for GABA-T, in addition to the GABA(A) and GABA(B) receptors characterizing them as GABAceptive cells. We demonstrate that GABA suppresses the reactive response of both astrocytes and microglia to the inflammatory stimulants lipopolysaccharide (LPS) and interferon-γ by inhibiting induction of inflammatory pathways mediated by NFκB and P38 MAP kinase. This results in a reduced release of the inflammatory cytokines TNFα and IL-6 and an attenuation of conditioned medium neurotoxicity toward neuroblastoma SH-SY5Y cells. These inhibitory reactions are partially mimicked by the GABA(A) receptor agonist muscimol and the GABA(B) receptor agonist baclofen, indicating that GABA can stimulate both types of receptors in astrocytes as well as microglia. We conclude that the antiinflammatory actions of GABA offer new therapeutic opportunities since agonists should enhance the effectiveness of other antiinflammatory agents that operate through non-GABA pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 4-Aminobutyrate Transaminase / metabolism
  • Aged
  • Aged, 80 and over
  • Annexins
  • Astrocytes / drug effects
  • Astrocytes / metabolism*
  • Blotting, Western
  • Brain / metabolism*
  • Cells, Cultured
  • Cyclohexanecarboxylic Acids / pharmacology
  • Enzyme Inhibitors / pharmacology
  • Enzyme-Linked Immunosorbent Assay
  • GABA-A Receptor Agonists / pharmacology
  • Glutamate Decarboxylase / metabolism
  • Humans
  • Immunohistochemistry
  • Interleukin-6 / metabolism
  • Male
  • Microglia / drug effects
  • Microglia / metabolism*
  • Muscimol / pharmacology
  • Protozoan Proteins
  • Receptors, GABA / metabolism*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tumor Necrosis Factor-alpha / metabolism
  • Vigabatrin / pharmacology
  • gamma-Aminobutyric Acid / metabolism*


  • Annexins
  • Cyclohexanecarboxylic Acids
  • Enzyme Inhibitors
  • GABA-A Receptor Agonists
  • Interleukin-6
  • Protozoan Proteins
  • Receptors, GABA
  • Tumor Necrosis Factor-alpha
  • annexin E1 protein, Giardia lamblia
  • Muscimol
  • gabaculine
  • gamma-Aminobutyric Acid
  • 4-Aminobutyrate Transaminase
  • Glutamate Decarboxylase
  • glutamate decarboxylase 1
  • Vigabatrin