Hydrogen sulfide and hemeproteins: knowledge and mysteries

Antioxid Redox Signal. 2011 Jul 15;15(2):393-404. doi: 10.1089/ars.2010.3698. Epub 2011 Apr 8.

Abstract

Historically, hydrogen sulfide (H(2)S) has been regarded as a poisonous gas, with a wide spectrum of toxic effects. However, like ·NO and CO, H(2)S is now referred to as a signaling gas involved in numerous physiological processes. The list of reports highlighting the physiological effects of H(2)S is rapidly expanding and several drug candidates are now being developed. As with ·NO and CO, not a single H(2)S target responsible for all the biological effects has been found till now. Nevertheless, it has been suggested that H(2)S can bind to hemeproteins, inducing different responses that can mediate its effects. For instance, the interaction of H(2)S with cytochrome c oxidase has been associated with the activation of the ATP-sensitive potassium channels, regulating muscle relaxation. Inhibition of cytochrome c oxidase by H(2)S has also been related to inducing a hibernation-like state. Although H(2)S might induce these effects by interacting with hemeproteins, the mechanisms underlying these interactions are obscure. Therefore, in this review we discuss the current state of knowledge about the interaction of H(2)S with vertebrate and invertebrate hemeproteins and postulate a generalized mechanism. Our goal is to stimulate further research aimed at evaluating plausible mechanisms that explain H(2)S reactivity with hemeproteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Hemeproteins / chemistry
  • Hemeproteins / drug effects*
  • Hemeproteins / metabolism
  • Humans
  • Hydrogen Sulfide / toxicity*
  • Models, Molecular
  • Protein Conformation

Substances

  • Hemeproteins
  • Hydrogen Sulfide