Simultaneous positron emission tomography (PET) assessment of metabolism with ¹⁸F-fluoro-2-deoxy-d-glucose (FDG), proliferation with ¹⁸F-fluoro-thymidine (FLT), and hypoxia with ¹⁸fluoro-misonidazole (F-miso) before and during radiotherapy in patients with non-small-cell lung cancer (NSCLC): a pilot study

Radiother Oncol. 2011 Jan;98(1):109-16. doi: 10.1016/j.radonc.2010.10.011. Epub 2010 Nov 4.


Objectives: To investigate the changes in tumour proliferation (using FLT), metabolism (using FDG), and hypoxia (using F-miso) during curative (chemo-) radiotherapy (RT) in patients with non-small-cell lung cancer (NSCLC).

Patients and methods: Thirty PET scans were performed in five patients (4 males, 1 female) that had histological proof of NSCLC and were candidates for curative-intent RT. Three PET-CT (Biograph S16, Siemens) scans were performed before (t(0)) and during (around dose 46 Gy, t(46)) RT with minimal intervals of 48 h between each PET-CT scan. The tracers used were (18)fluoro-2deoxyglucose (FDG) for metabolism, (18)fluorothymidine (FLT) for proliferation, and (18)F-misonidasole (F-miso) for hypoxia. The 3 image sets obtained at each time point were co-registered (rigid: n=9, elastic: n=1, Leonardo, TrueD, Siemens) using FDG PET-CT as reference. VOIs were delineated (40% SUV(max) values were used as a threshold) for tumours and lymph nodes on FDG PET-CT, and they were automatically pasted on FLT and F-miso PET-CT images. ANOVA and correlation analyses were used for comparison of SUV(max) values.

Results: Four tumours and twelve nodes were identified on initial FDG PET-CT images. FLT SUV(max) values were significantly lower (p<0.0006) at t(46) in both tumours and nodes. The decrease in FDG SUV(max) values had a trend towards significance (p=0.048). F-Miso SUV(max) values were significantly higher in tumours than in nodes (p=0.02) and did not change during radiotherapy (p=0.39). A significant correlation was observed between FLT and FDG uptake (r=0.56, p<10(-4)) when all data were pooled together, and they remained similar when the before and during RT data were analysed separately. FDG and F-miso uptakes were significantly correlated (r=0.59, p=0.0004) when all data were analysed together. The best fit was obtained after adjusting for lesion type (tumour vs. node). This correlation was observed for the SUV(max) measured during RT (r=0.70, p=0.008) but not for the pre-RT data (r=0.19, p=0.35). The weak correlation between FLT and F-miso uptakes only became significant (r=0.66, p=0.002) when the analysis was restricted to the data acquired during RT.

Conclusion: Three different PET acquisitions can be performed quasi-simultaneously (4-7 days) before and during radiotherapy in patients with NSCLC. Our results at 46 Gy suggest that a fast decrease in the proliferation of both tumours and nodes exists during radiotherapy with differences in metabolism (borderline significant decrease) and hypoxia (stable).

MeSH terms

  • Aged
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Carcinoma, Non-Small-Cell Lung / radiotherapy*
  • Cell Proliferation
  • Dideoxynucleosides*
  • Female
  • Fluorodeoxyglucose F18*
  • Humans
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • Lung Neoplasms / radiotherapy*
  • Male
  • Middle Aged
  • Misonidazole / analogs & derivatives*
  • Pilot Projects
  • Positron-Emission Tomography*
  • Radiopharmaceuticals*
  • Tomography, X-Ray Computed


  • Dideoxynucleosides
  • Radiopharmaceuticals
  • fluoromisonidazole
  • Fluorodeoxyglucose F18
  • Misonidazole
  • alovudine