Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 8:11:548.
doi: 10.1186/1471-2105-11-548.

Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces

Affiliations

Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces

Hanka Venselaar et al. BMC Bioinformatics. .

Abstract

Background: Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools.

Results: In this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the protein's 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (bio)medical researchers.

Conclusions: We tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPE's results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Overview of HOPE's process flow. The user submits a sequence and a mutation. HOPE will first collect information from a wide range of information sources. These sources include: WHAT IF for structural calculations on either the PDB file or a homology model that was build by YASARA, HSSP for conservation scores, DAS-servers for sequence-based predictions and Uniprot for sequence annotations. The data is stored in HOPE's information system. The data is combined with the known properties of the amino acids in a decision schedule. The result is a report shown on the HOPE website that will focus on the effect of the submitted mutation on the 3D-structure of the protein. The text and figures can be used in articles and publications.
Figure 2
Figure 2
HOPE's input screen. The user can submit a sequence of interest and indicate the mutated residue with two simple mouse-clicks. In this example HOPE will analyze a leucine to proline mutation on position 25 of the plant protein Crambin.
Figure 3
Figure 3
The two zones of sequence alignment identity that indicate the likelihood of adopting similar structures. Two aligned sequences are highly likely to have similar folds if their length and percentage sequence identity fall in the region above the threshold (black line). HOPE will build a homology model when the identity between the template and submitted sequence falls in this zone. In case the sequence identity is less than 5% above this threshold (grey line) HOPE will build a model but will also warn that the model is based on a template with low identity. The region below the threshold (indicated with a cross) indicates the zone where inference of structural similarity cannot be made, thus making it difficult to determine if model building will be possible. (Figure free after Sander and Schneider [25]).
Figure 4
Figure 4
Example of HOPE's output. A simplified example of HOPE's output. A) Explanation of the used method (structure, modelling or predictions) and links to the relevant databases. B) Text and pictures that explain the differences between the wild-type and mutant residue. (Text is left out of this figure for clarity.) C) Paragraph of the report explaining the effect of the mutation on contacts made by the residue, a disulfid bond in this case. It contains a link to the wiki-entry "cysteine" and "disulfid bond". D) Images/animations that show the effect of the mutation on the structure.
Figure 5
Figure 5
Detailed overview of HOPE's components. HOPE's input consists of the sequence and the mutation. The sequence is used for a BLAST search against the databases. Using the accession code (and PDB-file if available) HOPE can collect information from a series of information sources: WHAT IF calculations on the PDB-file or homology model built by YASARA, annotations in the Uniprot database, HSSP conservation scores and sequence-based predictions by DAS-servers. The information is combined in a decision scheme and a report is generated. This report is illustrated with pictures and animations and difficult keywords are linked to our own online dictionary.

Similar articles

Cited by

References

    1. Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP, Newbury-Ecob R, Hennekam RC, Van Buggenhout G, van Haeringen A. et al.Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 1999;99(2):143–153. doi: 10.1016/S0092-8674(00)81646-3. - DOI - PubMed
    1. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 2002;8(3):282–288. doi: 10.1038/nm0302-282. - DOI - PubMed
    1. Swinkels DW, Venselaar H, Wiegerinck ET, Bakker E, Joosten I, Jaspers CA, Vasmel WL, Breuning MH. A novel (Leu183Pro-)mutation in the HFE-gene co-inherited with the Cys282Tyr mutation in two unrelated Dutch hemochromatosis patients. Blood Cells Mol Dis. 2008;40(3):334–338. doi: 10.1016/j.bcmd.2007.10.003. - DOI - PubMed
    1. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894–3900. doi: 10.1093/nar/gkf493. - DOI - PMC - PubMed
    1. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814. doi: 10.1093/nar/gkg509. - DOI - PMC - PubMed

Publication types