Alterations in levels of mRNAs coding for neurofilament protein subunits during regeneration

Exp Neurol. 1990 Mar;107(3):230-5. doi: 10.1016/0014-4886(90)90140-n.


Animal models of neuronal injury can be used to explore mechanisms that regulate the expression of genes coding for cytoskeletal proteins and transmitter-related markers. In the present study, in situ hybridization was used to measure levels of messenger ribonucleic acid (mRNA) encoding each of the neurofilament subunits and beta-tubulin in spinal motor neurons at intervals (4 to 56 days) following a unilateral crush of the sciatic nerve. Levels of beta-tubulin mRNA increased (approximately twofold), peaked at 28 days postaxotomy, and returned to control values by 56 days postaxotomy. In contrast, levels of mRNA encoding neurofilament subunits were reduced and returned to control values at 56 days following the lesion. There were significant differences among relative levels of mRNAs coding for each subunit. Other studies have demonstrated that the ratio of pulse-labeled neurofilament subunits in motor axons remained unaltered during regeneration. Therefore, the ratios of neurofilament subunits in axons must be regulated at one of the steps that intervenes between the control of levels of mRNA and the anterograde axonal transport of assembled neurofilaments.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axons / physiology
  • Intermediate Filament Proteins / genetics*
  • Male
  • Motor Neurons / analysis
  • Motor Neurons / physiology
  • Nerve Crush
  • Nerve Regeneration / physiology*
  • Neurofilament Proteins
  • Nucleic Acid Hybridization
  • RNA, Messenger / analysis
  • RNA, Messenger / genetics*
  • Rats
  • Rats, Inbred Strains
  • Sciatic Nerve / physiology
  • Sciatic Nerve / ultrastructure


  • Intermediate Filament Proteins
  • Neurofilament Proteins
  • RNA, Messenger