Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects
- PMID: 21068044
- PMCID: PMC3049053
- DOI: 10.1098/rspb.2010.2161
Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects
Abstract
The social brain hypothesis posits that the cognitive demands of social behaviour have driven evolutionary expansions in brain size in some vertebrate lineages. In insects, higher brain centres called mushroom bodies are enlarged and morphologically elaborate (having doubled, invaginated and subcompartmentalized calyces that receive visual input) in social species such as the ants, bees and wasps of the aculeate Hymenoptera, suggesting that the social brain hypothesis may also apply to invertebrate animals. In a quantitative and qualitative survey of mushroom body morphology across the Hymenoptera, we demonstrate that large, elaborate mushroom bodies arose concurrent with the acquisition of a parasitoid mode of life at the base of the Euhymenopteran (Orussioidea + Apocrita) lineage, approximately 90 Myr before the evolution of sociality in the Aculeata. Thus, sociality could not have driven mushroom body elaboration in the Hymenoptera. Rather, we propose that the cognitive demands of host-finding behaviour in parasitoids, particularly the capacity for associative and spatial learning, drove the acquisition of this evolutionarily novel mushroom body architecture. These neurobehavioural modifications may have served as pre-adaptations for central place foraging, a spatial learning-intensive behaviour that is widespread across the Aculeata and may have contributed to the multiple acquisitions of sociality in this taxon.
Figures
Similar articles
-
Insect societies and the social brain.Curr Opin Insect Sci. 2016 Jun;15:1-8. doi: 10.1016/j.cois.2016.01.010. Epub 2016 Feb 4. Curr Opin Insect Sci. 2016. PMID: 27436726 Review.
-
Distributed cognition and social brains: reductions in mushroom body investment accompanied the origins of sociality in wasps (Hymenoptera: Vespidae).Proc Biol Sci. 2015 Jul 7;282(1810):20150791. doi: 10.1098/rspb.2015.0791. Proc Biol Sci. 2015. PMID: 26085587 Free PMC article.
-
Investment in higher order central processing regions is not constrained by brain size in social insects.Proc Biol Sci. 2014 Apr 16;281(1784):20140217. doi: 10.1098/rspb.2014.0217. Print 2014 Jun 7. Proc Biol Sci. 2014. PMID: 24741016 Free PMC article.
-
Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects.Brain Behav Evol. 2013;82(1):9-18. doi: 10.1159/000352057. Epub 2013 Aug 21. Brain Behav Evol. 2013. PMID: 23979452 Review.
-
Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis).Brain Behav Evol. 2015;85(2):117-24. doi: 10.1159/000381414. Epub 2015 Apr 28. Brain Behav Evol. 2015. PMID: 25925014
Cited by
-
Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura).Front Neuroanat. 2015 Jul 15;9:94. doi: 10.3389/fnana.2015.00094. eCollection 2015. Front Neuroanat. 2015. PMID: 26236202 Free PMC article.
-
Evolution of brain elaboration.Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684):20150054. doi: 10.1098/rstb.2015.0054. Philos Trans R Soc Lond B Biol Sci. 2015. PMID: 26554044 Free PMC article. Review.
-
Shore crabs reveal novel evolutionary attributes of the mushroom body.Elife. 2021 Feb 9;10:e65167. doi: 10.7554/eLife.65167. Elife. 2021. PMID: 33559601 Free PMC article.
-
Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing.Front Psychol. 2018 Oct 2;9:1717. doi: 10.3389/fpsyg.2018.01717. eCollection 2018. Front Psychol. 2018. PMID: 30333766 Free PMC article. Review.
-
An exploration of the social brain hypothesis in insects.Front Physiol. 2012 Nov 27;3:442. doi: 10.3389/fphys.2012.00442. eCollection 2012. Front Physiol. 2012. PMID: 23205013 Free PMC article.
References
-
- McGuire S. E., Le P. T., Davis R. L. 2001. The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330–133310.1126/science.1062622 (doi:10.1126/science.1062622) - DOI - DOI - PubMed
-
- Perez-Orive J., Mazor O., Turner G. C., Cassenaer S., Wilson R. I., Laurent G. 2002. Oscillations and sparsening of odor representation in the mushroom body. Science 297, 359–36510.1126/science.1070502 (doi:10.1126/science.1070502) - DOI - DOI - PubMed
-
- Blum A. L., Li W., Cressy M., Dubnau J. 2009. Short- and long-term memory in Drosophila require cAMP signaling in distinct cell types. Curr. Biol. 19, 1341–135010.1016/j.cub.2009.07.016 (doi:10.1016/j.cub.2009.07.016) - DOI - DOI - PMC - PubMed
-
- Mizunami M., Weibrecht J. M., Strausfeld N. J. 1993. A new role for the insect mushroom bodies: place memory and motor control. In Biological neural networks in invertebrate neuroethology and robotics (eds Beer R. D., Ritzman R. E., McKenna T.), pp. 199–225 New York, NY: Academic Press
-
- Mizunami M., Weibrecht J. M., Strausfeld N. J. 1998. Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402, 520–53710.1002/(SICI)1096-9861(19981228)402:4<520::AID-CNE6>3.0.CO;2-K (doi:10.1002/(SICI)1096-9861(19981228)402:4<520::AID-CNE6>3.0.CO;2-K) - DOI - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
