In response to the ENFSI and EDNAP groups' call for new STR multiplexes for Europe, Promega(®) developed a suite of four new DNA profiling kits. This paper describes the developmental validation study performed on the PowerPlex(®) ESI 16 (European Standard Investigator 16) and the PowerPlex(®) ESI 17 Systems. The PowerPlex(®) ESI 16 System combines the 11 loci compatible with the UK National DNA Database(®), contained within the AmpFlSTR(®) SGM Plus(®) PCR Amplification Kit, with five additional loci: D2S441, D10S1248, D22S1045, D1S1656 and D12S391. The multiplex was designed to reduce the amplicon size of the loci found in the AmpFlSTR(®) SGM Plus(®) kit. This design facilitates increased robustness and amplification success for the loci used in the national DNA databases created in many countries, when analyzing degraded DNA samples. The PowerPlex(®) ESI 17 System amplifies the same loci as the PowerPlex(®) ESI 16 System, but with the addition of a primer pair for the SE33 locus. Tests were designed to address the developmental validation guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), and those of the DNA Advisory Board (DAB). Samples processed include DNA mixtures, PCR reactions spiked with inhibitors, a sensitivity series, and 306 United Kingdom donor samples to determine concordance with data generated with the AmpFlSTR(®) SGM Plus(®) kit. Allele frequencies from 242 white Caucasian samples collected in the United Kingdom are also presented. The PowerPlex(®) ESI 16 and ESI 17 Systems are robust and sensitive tools, suitable for the analysis of forensic DNA samples. Full profiles were routinely observed with 62.5pg of a fully heterozygous single source DNA template. This high level of sensitivity was found to impact on mixture analyses, where 54-86% of unique minor contributor alleles were routinely observed in a 1:19 mixture ratio. Improved sensitivity combined with the robustness afforded by smaller amplicons has substantially improved the quantity of data obtained from degraded samples, and the improved chemistry confers exceptional tolerance to high levels of laboratory prepared inhibitors.
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.