Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment
- PMID: 21078877
- PMCID: PMC3019984
- DOI: 10.1128/MCB.00717-10
Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment
Abstract
mRNA turnover is a critical step in the control of gene expression. In mammalian cells, a subset of mRNAs regulated at the level of mRNA turnover contain destabilizing AU-rich elements (AREs) in their 3' untranslated regions. These transcripts are bound by a suite of ARE-binding proteins (AUBPs) that receive information from cell signaling events to modulate rates of ARE mRNA decay. Here we show that a key destabilizing AUBP, tristetraprolin (TTP), is repressed by the p38 mitogen-activated protein kinase (MAPK)-activated kinase MK2 due to the inability of phospho-TTP to recruit deadenylases to target mRNAs. TTP is tightly associated with cytoplasmic deadenylases and promotes rapid deadenylation of target mRNAs both in vitro and in cells. TTP can direct the deadenylation of substrate mRNAs when tethered to a heterologous mRNA, yet its ability to do so is inhibited upon phosphorylation by MK2. Phospho-TTP is not impaired in mRNA binding but does fail to recruit the major cytoplasmic deadenylases. These observations suggest that phosphorylation of TTP by MK2 primarily affects mRNA decay downstream of RNA binding by preventing recruitment of the deadenylation machinery. Thus, TTP may remain poised to rapidly reactivate deadenylation of bound transcripts to downregulate gene expression once the p38 MAPK pathway is deactivated.
Figures
Similar articles
-
MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment.J Biol Chem. 2010 Sep 3;285(36):27590-600. doi: 10.1074/jbc.M110.136473. Epub 2010 Jul 1. J Biol Chem. 2010. PMID: 20595389 Free PMC article.
-
Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element.Mol Cell Biol. 2006 Mar;26(6):2399-407. doi: 10.1128/MCB.26.6.2399-2407.2006. Mol Cell Biol. 2006. PMID: 16508014 Free PMC article.
-
The Conserved CNOT1 Interaction Motif of Tristetraprolin Regulates ARE-mRNA Decay Independently of the p38 MAPK-MK2 Kinase Pathway.Mol Cell Biol. 2022 Sep 15;42(9):e0005522. doi: 10.1128/mcb.00055-22. Epub 2022 Aug 3. Mol Cell Biol. 2022. PMID: 35920669 Free PMC article.
-
Control of mRNA decay by phosphorylation of tristetraprolin.Biochem Soc Trans. 2008 Jun;36(Pt 3):491-6. doi: 10.1042/BST0360491. Biochem Soc Trans. 2008. PMID: 18481987 Review.
-
MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin.Biochem Pharmacol. 2010 Dec 15;80(12):1915-20. doi: 10.1016/j.bcp.2010.06.021. Epub 2010 Jun 23. Biochem Pharmacol. 2010. PMID: 20599781 Review.
Cited by
-
The functional characterization of phosphorylation of tristetraprolin at C-terminal NOT1-binding domain.J Inflamm (Lond). 2021 Jun 5;18(1):22. doi: 10.1186/s12950-021-00288-2. J Inflamm (Lond). 2021. PMID: 34090459 Free PMC article.
-
Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.Mol Syst Biol. 2016 May 13;12(5):868. doi: 10.15252/msb.20156628. Mol Syst Biol. 2016. PMID: 27178967 Free PMC article.
-
The Bidirectional Link Between RNA Cleavage and Polyadenylation and Genome Stability: Recent Insights From a Systematic Screen.Front Genet. 2022 Apr 28;13:854907. doi: 10.3389/fgene.2022.854907. eCollection 2022. Front Genet. 2022. PMID: 35571036 Free PMC article. Review.
-
Cardiovascular inflammation: RNA takes the lead.J Mol Cell Cardiol. 2019 Apr;129:247-256. doi: 10.1016/j.yjmcc.2019.03.012. Epub 2019 Mar 14. J Mol Cell Cardiol. 2019. PMID: 30880251 Free PMC article. Review.
-
The role of RNA-binding protein tristetraprolin in cancer and immunity.Med Oncol. 2017 Nov 9;34(12):196. doi: 10.1007/s12032-017-1055-6. Med Oncol. 2017. PMID: 29124478 Review.
References
-
- Blum, J. L., A. M. Samarel, and R. Mestril. 2005. Phosphorylation and binding of AUF1 to the 3′-untranslated region of cardiomyocyte SERCA2a mRNA. Am. J. Physiol. Heart Circ. Physiol. 289:H2543-H2550. - PubMed
-
- Boeck, R., S. Tarun, Jr., M. Rieger, J. A. Deardorff, S. Muller-Auer, and A. B. Sachs. 1996. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271:432-438. - PubMed
-
- Briata, P., S. V. Forcales, M. Ponassi, G. Corte, C. Y. Chen, M. Karin, P. L. Puri, and R. Gherzi. 2005. p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell 20:891-903. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases