Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 29 (6), 747-54

Promise and Challenge of RNA Interference-Based Therapy for Cancer


Promise and Challenge of RNA Interference-Based Therapy for Cancer

Fabio Petrocca et al. J Clin Oncol.


Cancer therapeutics still fall far short of our goals for treating patients with locally advanced or metastatic disease. Until recently, almost all cancer drugs were crude cytotoxic agents that discriminate poorly between cancer cells and normally dividing cells. The development of targeted biologics that recognize tumor cell surface antigens and of specific inhibitors of pathways dysregulated in cancer cells or normal cellular pathways on which a cancer cell differentially depends has provided hope for converting our increasing understanding of cellular transformation into intelligently designed anticancer therapeutics. However, new drug development is painfully slow, and the pipeline of new therapeutics is thin. The discovery of RNA interference (RNAi), a ubiquitous cellular pathway of gene regulation that is dysregulated in cancer cells, provides an exciting opportunity for relatively rapid and revolutionary approaches to cancer drug design. Small RNAs that harness the RNAi machinery may become the next new class of drugs for treating a variety of diseases. Although it has only been 9 years since RNAi was shown to work in mammalian cells, about a dozen phase I to III clinical studies have already been initiated, including four for cancer. So far there has been no unexpected toxicity and suggestions of benefit in one phase II study. However, the obstacles for RNAi-based cancer therapeutics are substantial. This article will discuss how the endogenous RNAi machinery might be harnessed for cancer therapeutics, why academic researchers and biotech and pharmaceutical companies are so excited, and what the obstacles are and how they might be overcome.

Similar articles

See all similar articles

Cited by 42 PubMed Central articles

See all "Cited by" articles

Publication types


LinkOut - more resources