Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb 1;50(3):438-47.
doi: 10.1016/j.freeradbiomed.2010.11.024. Epub 2010 Nov 25.

Kinetic analysis of phagosomal production of reactive oxygen species

Affiliations

Kinetic analysis of phagosomal production of reactive oxygen species

Asma Tlili et al. Free Radic Biol Med. .

Abstract

Phagocytes produce large quantities of reactive oxygen species for pathogen killing; however, the kinetics and amplitude of ROS production on the level of individual phagosomes are poorly understood. This is mainly due to the lack of appropriate methods for quantitative ROS detection with microscopic resolution. We covalently attached the ROS-sensitive dye dichlorodihydrofluorescein (DCFH(2)) to yeast particles and investigated their fluorescence due to oxidation in vitro and in live phagocytes. In vitro, the dye was oxidized by H(2)O(2) plus horseradish peroxidase but also by HOCl. The latter produced a previously unrecognized oxidation product with red-shifted excitation and emission spectra and a characteristic difference in the shape of the excitation spectrum near 480 nm. Millimolar HOCl bleached the DCFH(2) oxidation products. Inside phagosomes, DCFH(2)-labeled yeast were oxidized for several minutes in a strictly NADPH oxidase-dependent manner as shown by video microscopy. Inhibition of the NADPH oxidase rapidly stopped the fluorescence increase of the particles. At least two characteristic kinetics of oxidation were distinguished and the variability of DCFH(2) oxidation in phagosomes was much larger than the variability upon oxidation in vitro. We conclude that DCFH(2)-yeast is a valuable tool to investigate the kinetics and amplitude of ROS production in individual phagosomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources