The effect of ring size variation on the structure and stability of lanthanide(III) complexes with crown ethers containing picolinate pendants

Dalton Trans. 2011 Jan 14;40(2):384-92. doi: 10.1039/c0dt00746c. Epub 2010 Nov 29.

Abstract

The coordination properties of the macrocyclic receptor N,N'-bis[(6-carboxy-2-pyridyl)methylene]-1,10-diaza-15-crown-5 (H(2)bp15c5) towards the lanthanide ions are reported. Thermodynamic stability constants were determined by pH-potentiometric titration at 25 °C in 0.1 M KCl. A smooth decrease in complex stability is observed upon decreasing the ionic radius of the Ln(III) ion from La [log K(LaL) = 12.52(2)] to Lu [log K(LuL) = 10.03(6)]. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes confirm the absence of inner-sphere water molecules in these complexes. (1)H and (13)C NMR spectra of the complexes formed with the diamagnetic La(III) metal ion were obtained in D(2)O solution and assigned with the aid of HSQC and HMBC 2D heteronuclear experiments, as well as standard 2D homonuclear COSY and NOESY spectra. The (1)H NMR spectra of the paramagnetic Ce(III), Eu(III) and Yb(III) complex suggest nonadentate binding of the ligand to the metal ion. The syn conformation of the ligand in [Ln(bp15c5)](+) complexes implies the occurrence of two helicities, one associated with the layout of the picolinate pendant arms (absolute configuration Δ or Λ), and the other to the five five-membered chelate rings formed by the binding of the crown moiety (absolute configuration δ or λ). A detailed conformational analysis performed with the aid of DFT calculations (B3LYP model) indicates that the complexes adopt a Λ(λδ)(δδλ) [or Δ(δλ)(λλδ)] conformation in aqueous solution. Our calculations show that the interaction between the Ln(III) ion and several donor atoms of the crown moiety is weakened as the ionic radius of the metal ion decreases, in line with the decrease of complex stability observed on proceeding to the right across the lanthanide series.