The Effect of Eating Frequency on Appetite Control and Food Intake: Brief Synopsis of Controlled Feeding Studies

J Nutr. 2011 Jan;141(1):154-7. doi: 10.3945/jn.109.114389. Epub 2010 Dec 1.

Abstract

Increased eating frequency is postulated to increase metabolism, reduce hunger, improve glucose and insulin control, and reduce body weight, making it an enticing dietary strategy for weight loss and/or the maintenance of a healthy body weight. Because past research has primarily focused on the effects of eating frequency on changes in energy expenditure and body weight, limited data exist surrounding the impact of eating frequency on appetite control and energy intake. We provide a brief review of the controlled-feeding studies that primarily targeted the appetitive, hormonal, and food intake responses potentially altered with eating frequency. The 3 meal/d pattern served as the reference for defining increased or reduced eating frequency. In general, increased eating frequency led to lower peaks (P < 0.05) in perceived appetite, satiety, glucose, insulin, ghrelin, and PYY responses compared with reduced eating frequency. However, when examining these responses over the course of the day (i.e. using area under the curve assessments), no differences in any of these outcomes were observed. The rate of gastric emptying also appears to be unaltered with increased eating frequency. Subsequent food intake was examined in several studies with conflicting results. Regarding the effect of reduced eating frequency, several studies indicate significant increases in perceived appetite and reductions in perceived satiety when 1 or 2 meals were eliminated from the daily diet. Taken together, these findings suggest that increased eating frequency (>3 eating occasions/d) has minimal, if any, impact on appetite control and food intake, whereas reduced eating frequency(<3 eating occasions/d) negatively effects appetite control.

Publication types

  • Review

MeSH terms

  • Appetite Regulation*
  • Body Weight
  • Eating*
  • Energy Intake*
  • Humans