A dimorphic pheromone circuit in Drosophila from sensory input to descending output

Nature. 2010 Dec 2;468(7324):686-90. doi: 10.1038/nature09554.

Abstract

Drosophila show innate olfactory-driven behaviours that are observed in naive animals without previous learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically programmed. Despite the numerical simplicity of the fly nervous system, features of the anatomical organization of the fly brain often confound the delineation of these circuits. Here we identify a neural circuit responsive to cVA, a pheromone that elicits sexually dimorphic behaviours. We have combined neural tracing using an improved photoactivatable green fluorescent protein (PA-GFP) with electrophysiology, optical imaging and laser-mediated microlesioning to map this circuit from the activation of sensory neurons in the antennae to the excitation of descending neurons in the ventral nerve cord. This circuit is concise and minimally comprises four neurons, connected by three synapses. Three of these neurons are overtly dimorphic and identify a male-specific neuropil that integrates inputs from multiple sensory systems and sends outputs to the ventral nerve cord. This neural pathway suggests a means by which a single pheromone can elicit different behaviours in the two sexes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetates / pharmacology
  • Animals
  • Arthropod Antennae / cytology
  • Arthropod Antennae / drug effects
  • Arthropod Antennae / innervation
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / anatomy & histology
  • Drosophila melanogaster / cytology*
  • Drosophila melanogaster / drug effects*
  • Female
  • Male
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism
  • Neuroanatomical Tract-Tracing Techniques
  • Odorants
  • Oleic Acids / pharmacology
  • Olfactory Pathways / cytology
  • Olfactory Pathways / drug effects*
  • Olfactory Perception / drug effects
  • Olfactory Perception / physiology
  • Pheromones / pharmacology*
  • Physical Stimulation
  • Sensory Receptor Cells / drug effects
  • Sensory Receptor Cells / physiology
  • Sex Characteristics*
  • Sexual Behavior, Animal / drug effects
  • Sexual Behavior, Animal / physiology
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Acetates
  • Drosophila Proteins
  • Nerve Tissue Proteins
  • Oleic Acids
  • Pheromones
  • Transcription Factors
  • cis-vaccenyl acetate
  • fru protein, Drosophila