Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume
- PMID: 21125654
- PMCID: PMC3005002
- DOI: 10.1002/glia.21103
Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume
Abstract
The nervous system is protected by blood barriers that use multiple systems to control extracellular solute composition, osmotic pressure, and fluid volume. In the human nervous system, misregulation of the extracellular volume poses serious health threats. Here, we show that the glial cells that form the Drosophila blood-nerve barrier have a conserved molecular mechanism that regulates extracellular volume: the Serine/Threonine kinase Fray, which we previously showed is an ortholog of mammalian PASK/SPAK; and the Na-K-Cl cotransporter Ncc69, which we show is an ortholog of human NKCC1. In mammals, PASK/SPAK binds to NKCC1 and regulates its activity. In Drosophila, larvae mutant for Ncc69 develop a peripheral neuropathy, where fluid accumulates between glia and axons. The accumulation of fluid has no detectable impact on action potential conduction, suggesting that the role of Ncc69 is to maintain volume or osmotic homeostasis. Drosophila Ncc69 has kinetics similar to human NKCC1, and NKCC1 can rescue Ncc69, suggesting that they function in a conserved physiological mechanism. We show that fray and Ncc69 are coexpressed in nerve glia, interact in a yeast-two-hybrid assay, and have an essentially identical bulging nerve phenotype. We propose that normally functioning nerves generate extracellular solutes that are removed by Ncc69 under the control of Fray. This mechanism may perform a similar role in humans, given that NKCC1 is expressed at the blood-brain barrier.
© 2010 Wiley-Liss, Inc.
Figures
Similar articles
-
The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system.Sci Rep. 2019 Feb 21;9(1):2475. doi: 10.1038/s41598-019-38850-x. Sci Rep. 2019. PMID: 30792494 Free PMC article.
-
Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule.J Biol Chem. 2014 Sep 19;289(38):26131-26142. doi: 10.1074/jbc.M114.577767. Epub 2014 Aug 1. J Biol Chem. 2014. PMID: 25086033 Free PMC article.
-
Maintenance and regulation of extracellular volume and the ion environment in Drosophila larval nerves.Glia. 2011 Sep;59(9):1312-21. doi: 10.1002/glia.21132. Epub 2011 Feb 8. Glia. 2011. PMID: 21305613 Free PMC article. Review.
-
Fray, a Drosophila serine/threonine kinase homologous to mammalian PASK, is required for axonal ensheathment.Neuron. 2000 Dec;28(3):793-806. doi: 10.1016/s0896-6273(00)00154-9. Neuron. 2000. PMID: 11163267
-
Cotransporters, WNKs and hypertension: an update.Curr Opin Nephrol Hypertens. 2008 Mar;17(2):186-92. doi: 10.1097/MNH.0b013e3282f5244e. Curr Opin Nephrol Hypertens. 2008. PMID: 18277153 Review.
Cited by
-
The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system.Sci Rep. 2019 Feb 21;9(1):2475. doi: 10.1038/s41598-019-38850-x. Sci Rep. 2019. PMID: 30792494 Free PMC article.
-
A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency.Elife. 2020 Dec 14;9:e57831. doi: 10.7554/eLife.57831. Elife. 2020. PMID: 33315011 Free PMC article.
-
The Drosophila NKCC Ncc69 is required for normal renal tubule function.Am J Physiol Cell Physiol. 2012 Oct 15;303(8):C883-94. doi: 10.1152/ajpcell.00201.2012. Epub 2012 Aug 22. Am J Physiol Cell Physiol. 2012. PMID: 22914641 Free PMC article.
-
Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster.Genetics. 2018 Oct;210(2):357-396. doi: 10.1534/genetics.118.300224. Genetics. 2018. PMID: 30287514 Free PMC article. Review.
-
The Drosophila Malpighian tubule as a model for mammalian tubule function.Curr Opin Nephrol Hypertens. 2019 Sep;28(5):455-464. doi: 10.1097/MNH.0000000000000521. Curr Opin Nephrol Hypertens. 2019. PMID: 31268918 Free PMC article. Review.
References
-
- Alfonso TB, Jones BW. gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Dev Biol. 2002;248(2):369–83. - PubMed
-
- Alvarez-Leefmans FJ, Leon-Olea M, Mendoza-Sotelo J, Alvarez FJ, Anton B, Garduno R. Immunolocalization of the Na(+)-K(+)-2Cl(−) cotransporter in peripheral nervous tissue of vertebrates. Neuroscience. 2001;104(2):569–82. - PubMed
-
- Arnold W, Nadol JB, Jr, Weidauer H. Ultrastructural histopathology in a case of human ototoxicity due to loop diuretics. Acta Otolaryngol. 1981;91(5–6):399–414. - PubMed
-
- Banerjee S, Sousa AD, Bhat MA. Organization and function of septate junctions: an evolutionary perspective. Cell Biochem Biophys. 2006;46(1):65–77. - PubMed
-
- Bartel PL, Chien C-T, Sternglanz R, Fields S. Using the two-hybrid system to detect protein-protein interactions. In: Hartley DA, editor. Cellular interactions in development : a practical approach. New York: IRL Press at Oxford University Press; 1993.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
